

OSPORT - A Practical Tool for Porting or Adjusting
Operating System Source-Code

Osvaldo de Souza, Helano S. Castro

LESC – Laboratório de Engenharia de Sistemas de Computação
DETI - Depto Engenharia de Teleinformática – Universidade Federal do Ceará (UFC)

Campus do PICI bloco 910 – Fortaleza – CE – Brazil
{osvaldo,helano}@lesc.ufc.br

Abstract. Many projects frequently uses the “trial and error” approach for
Operating System (OS) porting or maintenance, resulting in incomplete or
inconsistent modifications. This can be partially explained due the absence of
useful tools helping the source-code analysis, in order to determine what
source-code must be modified for adjusting it to another hardware platform.
In this paper, we present an application called OSPORT, based on a seminal
method for detecting OS parts that should be adjusted in order to port or
adjust the OS for a new hardware platform. The OSPORT provides: a
complete list of source-codes that must be adjusted; the interdependence
between these source-codes; the priority order of modifications for each
source-code; and an effort-based schedule, in order to plan the modifications.

1. Introduction

The Operating System (OS) is the most important software-element present in systems
based on microprocessors or microcontrollers. However, it is regrettable that there are
not many tools that support the designer when it comes to maintenance, much less when
one needs to port that OS into a different hardware platform. The available methods and
tools focus primarily on hardware elements and this can be partially explained by the
fact that usually the design of Embedded Systems (ES) and Personal Computers (PC)
are developed by engineers who are hardware-oriented designers [LEE 2000].

The software elements related to high-level applications consume most of the
development efforts, while (OS) has minimal attention and frequently it does not figure
as a priority item. Actually, OS adjustment efforts rarely are not improvised. Recent
researches have proposed development models where hardware and software
development is carried out in parallel. However, they do not provide any OS
development or adjustment-specific approach [POSADAS 2004][CARRO 2004].

 Although OS is a significant subject in computer science, as far as its
architecture and design are concerned, there is no specific approach dealing with OS
development or adjustments.

There are many approaches that furnish design guidelines for the major OS’s
parts, for example: task manager, memory manager, just to quote some of those parts. It
is well known that there are even many source-code examples showing how to assembly
those major parts. Although there are many guidelines showing how to design OSs, they

840

do not show how to modify an OS when, for example, the target hardware-platform is
different than the original hardware-platform that it was designed for. This may be
problematic, especially in (ES) development, because the source-code must be
constantly modified in order to meet the new hardware’s requirements.

Most OS modifications are based on a “trial and error” approach and, obviously,
this is not the best way to deal with this problem. On the other hand, there are generic
tools, which are applicable to generic source-code development, but they do not provide
special functions to deal with OS complexity, regarding its deep hardware-attachment.

The greatest motivation for this research was the realization (after having
designing many embedded systems) that there is no methodology for porting OS for
embedded systems. Although the methods discussed in this paper have, as a target,
embedded systems, those methods should also work for other classes of systems.

As far as we know, up to present there are no appropriate methods for OS
porting in the literature, which is clear to us for the extremely reduced number of papers
on the subject. Realizing that, the authors conceived an appropriate method to help on
this task. This paper describes a complete method designed to do that job, as well as
provides a practical contribution to the field, since it presents an application, called
Operating System PORt Tool – OSPORT, which was developed according the proposed
method, in order to guide the designer in the process of porting an OS into a new
hardware.

2. The Method which OSPORT Relies on

The OSPORT was developed based on a method that reveals all source-code files that
must be analyzed, modified, reduced or increased in order to port or adjust an OS into a
new hardware.

The method, in its turn, combines information obtained from the OS source-code
and particularities of the new hardware-platform, and it is based on source-code cross-
reference. The resulting cross-reference information shows all required source-code to
provide software-support to the hardware.

A table holding the source-code relationship, called crossover-table, must be
created when executing the cross-reference step. Creating such table requires expert
knowledge about the OS and the target hardware in order to bind the software and the
respective hardware it must provide support for.

2.1. Method Overview

Table 1 shows the steps of the proposed method. They are enumerated from 0
to 4.

Table 2 shows the transitions for these steps. Eventually, any of these steps can be re-
run during the project execution.

Table 1. Five Steps of the Method

Step Description Step Description

N0 Evaluate Requirements through Decision Making Support
(DM)

N3 Identify all source-code relationships
N1 Identify Hardware elements without software support N4 Identify the source-code precedence

N2 Identify all source-code to be modified

841

Table 2. Transitions for the Proposed Method

Transition Description

T0-0 Evaluate Requirements through decision making support
T0-1 Impact of hardware-elements over software elements
T1-0 Reevaluation of hardware-elements impact over the decision making support
T2-0 Impact of software-elements over project efforts, required for project accomplishment
T0-2 Reevaluation of software-elements impact over the decision making support
T2-1 Impact of software availability over hardware definition
T1-2 Impact of hardware availability over software definition
T2-3 Impact of new software-elements over the dependency table
T3-3 Recursive definition of software-dependencies
T3-4 Software-dependencies impact over precedence table actualization
T4-3 Precedence table impact over the dependency table – Creating precedence table

Figure 1 shows a graph representing all transitions and steps regarding Table 1 and

Table 2 combination. Steps N0, N1 and N2 are strongly connected and most
critical issues are addressed in their transitions. A detailed description of all steps is
presented in the next sections.

Figu re 1. Five Steps Method Graph

2.1.1. Step N0 – Evaluate Requirements through Decision Making Support

The fundamental goal of step N0 is to submit the initial decision to the use of a Decision
Making Model (DM) [MARKO 2001]. Figure 2 shows a suitable DM for an ES
development project.

842

Figu re 2. A Decision Making Model Applicable for ES

During project execution, DM can be adjusted in order to include new
constraints. Of course, a suitable DM helps decreasing the effort on critical project’s
phases [MARKO 2001]. The DM recursively uses other steps from the proposed
method in order to provide the following information: if the target OS is suitable for the
target hardware-platform; all hardware-elements lacking OS support; and all software-
elements needing modifications for the new hardware-platform.

2.1.2. Step N1 – Identify Hardware-Elements without Software Support

Step N1 aims at identifying discrepancies in the target hardware platform for the chosen
OS. The crossover-table is the main result obtained after this step is done.

If a different hardware element is present in the new hardware-platform, then a
similar1 element must be selected. If the different hardware does not have any similar
element supported in the chosen OS, the way to keep them working is by developing
and using device drivers in order to provide OS supporting. The crossover-table’s initial
version is built by identifying the source-code and its respective hardware for what it
provides support. By using this initial version it is possible to identify what hardware-
element there is no software support.

2.1.3. Step N2 – Identify all source-code to be modified

The precise definition of all source-code to be modified requires the extension of the
crossover-table, which takes place in steps N1 and N2. Please note that only hardware-
dependent source-code must be considered. The table extension is obtained by applying
the read-and-search approach over the source-code.

In order to identify all source-code needing modification, a cross-reference must
be made. This cross-reference reveals source-code’s relationship. If a source-code (K)
requests services from other source-code (L) we named it: “source-code’s relationship”.

1 Similar hardware means another hardware with the same functions

843

Referring to figure 3, it can be seen that, a modification on (L) reflects on (K),
and modifications on (K) also affects (L). This figure also depicts a group of source-
code’s relationship which must be considered when modifying a source-code.

Figu re 3. Dependency Matrix Template

2.1.4. Steps N3 and N4

Three kinds of essential pieces of information are revealed through the crossover-table:
dependencies, requirements, and precedence.

Dependency identifies the interconnection’s level of the source-code needing
modifications. Dependency’s level of a given source-code is obtained by adding all the
other source-codes from which the given source-code depends on.

In general, the dependency computation is carried out as seen in (1) and the total
of requirements as seen in (2).

The work needed for obtaining the information related to dependency and
requirements of a source-code is a read-and-search job inside the OS source-codes.

 Special care must be taken when solving cyclic references between source-codes
since they could result in inadequate precedence classification. Such a problem occurs
when a source-code file uses services implemented in another source-code.

Cyclic references must be resolved before the precedence between routines is
computed. A strategy for solving this problem consists on using the Mock Object
Pattern for creating temporary replacement routines [BROWN 2003].

844

In order to distribute the large information volume to be manipulated when
porting an OS, a template/model for crossover-reference table called Dependency
Matrix is proposed in the following subsection.

2.1.4.1. Step N3 – Creating a Dependency Matrix

Figure 3 depicts a dependency matrix, proposed for ES development. All source-code
(subcomponents) and source-code families (components) that must be modified are
placed in this matrix.

For the purpose of clearness, the example shown in Figure 4 only presents the
subcomponent’s level. Again, it is important to observe that only the source-code to be
ported must be referenced.

The matrix is filled by marking a component that depends on other component.
In order to do that, each subcomponent (in a row) is inspected by marking all cells in
that row containing a subcomponent (in a column) from which the given subcomponent
depends on.

Figu re 4. Dependency Matrix Template

2.1.4.2. Step N4 – Creating a Precedence Matrix

A precedence matrix is obtained from information resulting from the processing of the
dependency matrix.

The Algorithm 1, part of the proposed method, classifies all routines held in the
precedence matrix at the same time as it also solves cyclic reference issues. This
processing considers the dependencies and requirements computed using (1) and (2),
respectively. Once the dep(s) and req(s) values are defined, all information needed in
order to provide data required in steps 1, 2 and 3 of Algorithm 1 is available. Figure 5
contains an example of a precedence matrix that is obtained after applying the
algorithm.

845

Figu re 5. Precedence Matrix.

1. For each routine, the totals of dependencies are registered in a list.

2. Let DEP(i)=the number of dependencies of the given routine

3. Let REQ(i)= the number of requirements of the given routine

4. Make SUP(i) = 0

5. Make PEND(i) = DEP(i)

6. Make PRIORI(i) = 0

7. Make PRIORITY = 1

8. The dependency list is classified in ascending order based on PEND and in descending order based on REQ

9. For each routine pair R(i) and R(k) com PEND(i)>0, and cyclic dependence::

1. A mock routine named mock(i)(k) is created

2. Make REQ(mock(i)(k))=1: Make DEP(mock(i)(k))=0: Make SUP(mock(i)(k))=0

3. Add mock(i)(k) to the dependencies of R(i)

4. Remove R(k) from the dependencies of R(i)

10. Classify the dependence list in ascending order based on PEND and descending order based on REQ

11. For each routine R(i) such as PEND(i) = 0 and PRIORI(i) = 0, do:

1. Make PRIORI(i) = PRIORITY: PRIORITY = PRIORITY + 1

2. For each routine R(k) depending on R(i), do:

1. SUP(k)= SUP(k)+1

2. PEND(k)= DEP(k) – SUP(k)

12. Repeat step 10 until all routines are prioritized

13. Classify the dependency list in ascending order by PRIORI

Algorithm 1. Priority Computation and Cyclic Reference Removal.

3. The OSPORT Specification

The fundamental steps in the presented method were applied by designing an
application dealing with Linux kernel source-code. Although method is applicable to
any OS, it should be appreciated that, since Linux is an open-source code OS, more
information that is necessary to apply the method is available than that provided by an
analysis carried out on a non-open-source OS. On the other hand, it should be also
stressed that open-source OS is being much more preferred in the project of embedded
systems since one has not to pay royalties, which minimizes the total cost of ownership

846

(TCO). As a result, the authors wondered that the best flavor of the method would be
better captured by the readers if an example regarding Linux was given.

OSPORT was developed according to JAVA 1.5 specifications and it runs under
Linux or Windows. Table 3 depicts the specification for OSPORT application.

Table 3. OSPORT Specification

Feature Specification

Development Platform JAVA 1.5.0_08 / NetBeans IDE 5.5

Operating System Platform Linux; Windows XP

Data Base Engine MySQL 5.0

C Parser Built in

Assembly Parser Built in

Operating System Target Linux Source-code

The following sections present details for OSPORT’s implementation.

3.1. The Architecture

The OSPORT has a modular architecture, which makes it easier the process of adjusting
it for other OS than Linux. Figure 6 depicts its functional architecture.

Figu re 6. OSPORT’s Layer Architecture

C and Assembly parsers are required in order to build the intermediate
information which is useful for the read-and-search approach; this information is
recorded into the MySQL data-bases.

The hardware selector uses the Linux configuration schema for gathering all
relevant information for providing, in a basic and effortless way, the hardware versus
software combination. That procedure minimizes the human-knowledge dependency
but, if necessary, this combination can be extended by the user through OSPORT’s
functions. Mapping hardware versus software relationship helps identifying hardware
elements without software-support, and it also helps deciding what source-code must be
modified in order to match some hardware difference. The crossover module traces the
source-code, recording all information that means relationships, and building a cross-

847

reference database. The table constructor builds all tables and matrixes from the
relationships revealed by the crossover module.

3.2. Running OSPORT

The OSPORT was designed to be an user-friendly application, simple & easy. Example
of some of its graphical interfaces is shown in Figures 7.

Figu re 7. OSPORT’s Graphical Interface

The steps the user should follow, when using the OSPORT application, are:

1- Select the Linux version using the platform/Set Kernel option (Figure 7 (A));

2- Select the similar hardware-platform for the target hardware-platform (Figure 7
(B));

848

3- Map all hardware differences from the similar hardware-platform concerning the
target hardware-platform (Figure 7 (C));

4- Include new dependencies in order to deal with: non-similar hardware, which
does not match any options in step 3; software-features modification; kernel-
hacking modification (Figure 7 (D));

5- Start source-code cross-reference (Figure 7 (E));

6- After starting the source-code cross-reference (Figure 7 (F)), the user can use
OSPORT to build the tables using the Tables option, in the main menu.

3. A Study Case

As a study case, we present the results obtained from OSPORT working with Linux
2.6.0 source-code.

In this non-complex study, the goal is to obtain a simple list of all source-code
that must be analyzed in order to adjust some Linux-kernel features for an EBSA-110
similar board system. Another considerable study case, with OMAP5912 and
OMAP5912 Starter Kit [OMAP 2007] (which is based on a dual-core processor that
consists of a DSP and an ARM) is under development, in order to validate the
OSPORT’s accuracy in large OS-porting projects. EBSA-110 is an evaluation board for
a StrongARM processor, available from Digital, and it is currently fully supported by
Linux, which makes the job of doing kernel adjustments on the similar board, a fairly
easy task. This board has limited on-board hardware features, including an onboard
Ethernet interface, two PCMCIA sockets, two serial ports and a parallel port. The target
hardware-platform, similar to EBSA-110, has no parallel ports, and it has one Bluetooth
device.

3.2. Results

The cross-reference process only involved 8591 source-code files out of 18747 available
Linux kernel files. The OSPORT’s process takes about 20 minutes and it produces the
results shown in Table 4, which contains the list of source-code matching the target
system-board. Note that this list does not mean the source-code that MUST be modified.
It shows the source-code that MUST be analyzed, and that probably will need
modifications.

Source-code files presented in the element’s list are related with the
modifications required in order to adjust the OS for the target system-board, concerning
its differences from the EBSA-110 system board.

849

Table 4. Source-code files list

Source-code file Source-code file
include\linux\autoconf.h include\linux\parport.h
include\linux\autoconf.h drivers\bluetooth\bcm203x.c
drivers\bluetooth\bfusb.c drivers\bluetooth\hci_usb.c
drivers\bluetooth\hci_bcsp.c drivers\bluetooth\hci_ldisc.c
drivers\bluetooth\hci_h4.c drivers\bluetooth\bpa10x.c
drivers\bluetooth\hci_vhci.c drivers\bluetooth\hci_uart.h
drivers\bluetooth\hci_event.c net\bluetooth\hci_conn.c
net\af_bluetooth.c net\hci_core.c
net\l2cap.c net\hci_sock.c
net\hci_sysfs.c net\sco.c
net\bluetooth\rfcomm\tty.c net\bluetooth\rfcomm\sock.c
net\bluetooth\rfcomm\core.c net\bluetooth\bnep\sock.c
net\bluetooth\bnep\netdev.c net\bluetooth\bnep\core.c
net\bluetooth\cmtp\capi.c net\bluetooth\cmtp\sock.c
net\bluetooth\cmtp\core.c net\bluetooth\hidp\sock.c
net\bluetooth\hidp\core.c drivers\char\lp.c
drivers\parport\procfs.c drivers\parport\ieee1284.c
drivers\parport\parport_pc.c drivers\parport\share.c
drivers\parport\ieee1284_ops.c drivers\parisc\superio.c
drivers\block\paridade\bpck6.c drivers\block\paridade\paride.c

3. Conclusions

Developing systems without a well-defined approach may result in unstable or
incomplete projects, regarding the OS. As it could be seen, the OSPORT application
covers the essential steps for porting or adjusting an OS for a new hardware-platform.

 The proposed approach for obtaining dependencies between source-codes
comprising the OS assures that all adjustments are considered. The proposed method
aggregates quality to the embedded-system development projects by providing a
complete and anticipated view of the development and adjustment activities needing to
be performed when porting an OS.

 Most embedded-system projects and PC based projects deal with OS adjustment
and it is important to count on applications that help the designer on the decision of
what, and where, modifications should be done in the project. OSPORT application
aims at providing efficient support by determining, at an early phase, all source-code
that must be analyzed. As far as we know, this is an original work addressing this
specific issue.

4. References

BOOCH, G., Object-oriented development. IEEE Transactions on Software
Engineering. Vol. SE-12, no. 2, pp. 211-221., 1986

BOOCH, G, "On Architecture," IEEE Software, vol. 23, no. 2, pp. 16-
18, Mar/Apr, 2006.

BROWN, M. A, TAPOLESANYI, E., Mock Object Patterns, Version 1.2.3 – 2003.
CAMPBELL, H. R., et al, CHOICES (Class Hierarchical Open Interface for Custom

Embedded Systems), Operating Systems Review, 21(3):9-17, 1987.
CARRO, L.; WAGNER, R. F., Sistemas Computacionais Embarcados, 2º capítulo,

2004.

850

FROHICH, A. A. M, Application-Oriented Operating Systems, Dissertação de mestrado
Universidade Federal de Santa Catarina, 2001

LEE E.A., What’s Ahead form Embedded Software? - IEEE Computer, September
2000.

PARNAS, D. L., On the Design and Development of Program Families, IEEE Vol SE-2
Nº 1, 1976.

POSADAS, H., et al, Single Source Design Environment for Embedded Systems Based
on SystemC, Design Automation for Embedded System, 9, 293-312, 2004.

POLPETA, F. V., FROHICH. A. A. M, Um Método para a Geração de Sistemas
Embutidos Orientados a Aplicação Baseados em SoCs, XXV Congresso SBC 3129-
2005.

MARKO BOHANEC. IN C. BAVEC et al., editor, Proceedings of the 4th International
Multi-conference Information Society 2001, volume A, pages 86--89, Ljubljana,
October 2001.

OMAP, The OMAP5912 Starter Kit (OSK), website address:
http://www.kanecomputing.co.uk/osk_omap5912.htm, 2007.

851

