
Implementation Techniques for Supporting
Component Based Embedded Systems

Rafael Luiz Cancian
and Marcelo Ricardo Stemmer

Department of Automation and Systems (DAS)
Federal University of Santa Catarina (UFSC)

Florianópolis, Brazil
Email: {cancian,marcelo}@das.ufsc.br

Antônio Augusto Medeiros Fröhlich
Laboratory for Software and Hardware Integration (LISHA)

Computer Science Department (INE)
Federal University of Santa Catarina(UFSC)

Email: guto@lisha.ufsc.br

Abstract—The use of a careful domain engineering is essential
to achieve the level of portability and efficiency demanded
by embedded systems. The Application Driven Embedded Sys-
tem Design (ADESD) methodology guides the development of
application-oriented embedded systems from domain analysis
to implementation, and uses several software engineering and
implementation techniques to achieve this goal. This paper
presents some implementation techniques used to support the de-
velopment of component based embedded systems using ADESD
methodology.

Index Terms—Component Based Design, Application Driven
Embedded System Design, Embedded Systems, Implementation
techniques

I. INTRODUCTION

Analysis of commonality and variability and proper design
and implementation processes in software (and hardware)
development is essential for quality, reuse, maintainability and
evolution of systems.

Several methods and techniques were created to deal with
commonalities and variability of software, including domain
analysis, collaboration-based design, family-based design, as-
pect oriented programming and component-based design.

Our group has worked with the Application Driven Embed-
ded System Design (ADESD), which was proposed to solve
some problems that limit the development of embedded sys-
tems, including architectural dependences and non-functional
properties. This methodology uses concepts of all the above
cited methods and is supported by special implementation
techniques and a software environment to assist the design
of component based embedded system instances. This paper
presents some implementation techniques used to support the
ADESD methodology.

The rest of this paper is organized as follow: section 2
summarizes some well-known methods and techniques that
deal with software variability, converging to the ADESD
methodology, that is the focus of this paper. Section 3 shows
how some of those methods and techniques are implemented
in a software environment for supporting the ADESD method-
ology to generate embedded systems. Section 4 presents some
results and conclusions from our experience.

II. THEORETICAL REFERENCES

Domain Analysis (DA) is the engineering of a family of
systems in an application domain though development and
application of reusable assets. The goal of DA is to develop
a reuse library asset that will be used in the implementation
of system instances in the domain family [4]. These assets
usually include software components, interface specifications,
documentation, test plans, and generators. The use of a careful
domain analysis is essential to achieve the level of portability
and reuse demanded by embedded systems. The domain
engineering process consists of systematic development of a
domain model, which is the representation of common and
variant aspects of a number of representative systems of a
domain and the rationale for variations. Implementing this
model, however, demands several implementation techniques.

Object-Oriented Design (OOD) is actually one of the
most used method of software design. It has been evolving
for more than 20 years and several languages and design
tools supporting it were developed. OOD identifies objects
with well-defined behavior that enclosures their own data and
communicate with other objects though message passing and
uses a notation for static and dynamic models [3]. Objects are
decomposed and common behaviors form classes. Variability
is modeled as subclasses, or specialized classes. OOD tries to
form classes with a single objective (highly coherence) and
with a minimum dependence of other classes (low coupling).
Besides its benefits, OOD produces overhead (caused by
inheritance, polymorphism, etc) that are hardly allowed when
resource constraints are imposed, as in embedded systems.
With careful design and implementation techniques, however,
that overhead can be eliminated, as we show in this paper.

Collaboration-Based Design extends OOD to express that
an object can play different roles in a system, and that a col-
laboration can be a better unit of reuse and composition than
a class [2], and has the potentiality to guide the development
of reusable components. A collaboration is defined by a set of
objects and an interaction protocol that specifies the roles of
each object in the collaboration. The way to implement roles is
not specified by the methodology, but it could be performed
by using parametrized classes (class templates), as we have



done.
Family-Based Design (FBD) was first introduced by Parnas

[8]. FBD tries to identify commonality and variability over ap-
plication systems. The basic criterion to group functionalities
is the commonality. Entities that share common functionalities
are grouped together to form families of components. The
variability over entities is a family modeled as different com-
ponent members of such family. A new application instance
can be composed or customized by selecting the appropriated
members of the identified families.

Component-Based Design (CBD) has became one of the
most promising approaches to the development of reusable
software for embedded systems. Reusability, however, does
not simply emerge from components. Components must be
designed to be reusable. In this way, components should
represent significant entities in the domain they are applied to,
which demands the use of other techniques to identify com-
monalities and variabilities. CBD is also the most promising
technique for hardware design as well. Hardware is designed
as a composition of reusable components, called Intellectual
Properties (IP), since it reduces the complexity and design
time [12]. IP are usually described in a Hardware Description
Language (HLD) or even higher level languages,as C++ [5] or
SystemC [1], and transparently translated to an HDL and then
interconnected in an on-chip-bus or in a network-on-a-chip.
Recent works demonstrated the applicability of other software
development techniques to hardware components as well, such
as aspect-oriented programming.

Aspect-Oriented Programming (AOP) was introduced
by Kiczales [7] to deal with non-functional properties of
component-based systems, such as security, synchronization,
sharing, timing and atomicity. AOP capture non-functional
properties in reusable units called aspects. Aspects are speci-
fied in aspect-oriented languages (eg aspect-java, aspect-c++)
and woven with components using aspect weavers to generate
the system. Although AOP suggests means to adapt compo-
nents according to an aspect, AOP itself does not enforce a
design policy that yields aspect independent components.

Application Driven Embedded System Design (ADESD)
was proposed by Fröhlich [6] to guide the development of
application-oriented operating systems from domain analysis
to implementation. It proposes strategies to define components
that represent significant entities in different domains. ADESD
allows the modeling of independent abstractions and organizes
them as family members, as defined in the FBD. To reduce
environment dependences and to increase abstractions re-
usability, ADESD aggregates the aspects separation (from
AOP) to the decomposition process. With the use of this
concern, it is possible to identify scenario variations and non-
functional properties and to model them as scenario aspects
that crosscut the entire system. The integrated utilization of
these and other advanced software engineering techniques
allows the development of efficient methodologies for embed-
ded systems design, both in basic software and in hardware
domains.

ADESD dictates that scenario dependencies must be fac-

tored out as aspects, thus keeping abstractions scenario-
independent. However, means must be provided to apply
factored aspects to abstractions in a transparent and efficient
way. The traditional approach to do this would be deploying
an aspect weaver, though the scenario adapter construct has
the same potentialities without requiring an external tool.
A scenario adapter wraps an abstraction, intermediating its
communication with scenario-dependent clients to perform the
necessary scenario adaptations.

Inflated interfaces summarize the features of all members
of a family, creating an unique view of the family as a
“super component”. They allow application programmers to
write their applications based on well-know, comprehensive
interfaces, postponing the decision about which member (com-
ponent) of the family shall be used until enough configuration
knowledge is acquired. The binding of an inflated interface to
one of the members of a family can thus be made by automatic
configuration tools that identify which features of the family
were used in order to choose the simplest/cheaper realization
that implements the requested interface subset. Summarizing,
in ADESD, during domain decomposition, abstractions are
identified from domain entities (using DA) and grouped in
families according to their commonalities. Yet, during this
phase, aspect separation is used to shape scenario-independent
abstractions, thus enabling them to be reused in a variety of
scenarios. These abstractions are subsequently implemented
to give rise to the actual software and hardware components.
This concept also enables an application-oriented embedded
system to be automatically generated of out of a set of software
and hardware components, since inflated interfaces serve as a
kind of requirement specification for the system that must be
generated.

Embedded Parallel Operating System (EPOS) is one
of the first practical strategies using ADESD. EPOS is a
framework conceived through ADESD that combines concerns
of DA, FBD, OAP, OOD and Static Meta Programming
(SMP). Besides operating system components, it has been
extended to deal with hardware [9], allowing for the design of
hybrid components whose software/hardware implementations
are suitable. This approach has so far enabled the development
of run-time support systems with architectures that are defined
according to the particular needs of applications as a system-
on-a-chip (SoC). Indeed, with all these features it seems a
promising approach to help solving the problems that currently
limit efficiency in component based embedded system devel-
opment. The effectiveness of ADESD and EPOS have already
been demonstrated in [9], [11], [10], and others.

III. DEVELOPMENT AND RESULTS

In this section we show how methods and techniques
described in the last section were implemented in EPOS
to support component based design for embedded systems.
We algo present some specific interesting cases, and briefly
describe new features of a software environment for supporting
ADESD.



Fig. 1. EPOS Domain Model

Figure 1 presents the organization of the component fam-
ilies in EPOS. Every architecture-dependent hardware unit
was abstracted as a hardware mediator. These constructs are
responsible for exporting, through their interfaces, all the func-
tionality needed by higher level system abstractions, which
are responsible for implementing traditional operating systems
services such as memory management, process management,
inter-process communication, etc. Our approach relies on a
static configuration mechanism that allows the generation of
optimized versions of the operating system and hardware
platforms for each of the applications that are going to use it.
This approach was implemented using EPOS framework and
consists on a repository of hardware and software components,
files to represent dependences over components, composition

Fig. 2. Organization of a scenario adapter

rules, scenario adapters, traits and features, and a software
environment that use all these stuff to configure and generate
application-oriented embedded systems.

Scenario Adapters were conceived in ADESD as a mech-
anism for AOP without the use of code weavers. Scenario
adapters are software artifacts that allow intercepting mes-
sages to system abstractions and the activation of a set of
aspects that define a scenario, and their basic organization
is depicted in figure 2. It looks like the Adapter design
pattern, but there are some fundamental differences. In sce-
nario adapters, the Abstraction and Scenario classes
are designed to be bound at compile-time by template special-
ization and not at runtime by polymorphic implementation, so
no overhead is introduced. Even efficient for their purposes,
scenario adapters do not present the features of correction and
code changing presented by code weavers.

Figure 3 depicts scenario adapters as implemented
in EPOS. For its implementation, the Client of an
Abstraction can access it only thought a Scenario
Adapter. This access is performed indirectly thought a
parametrized class Handle, which exports the interface of
the Abstraction. The Handle propagates the messages
destined for the Abstraction to the Adapter, which
combines the Scenario with the Abstraction itself,
as in figure 2. The Adapter intercepts the messages for
the Abstraction and invokes methods enter() and
leave() enclosuring such messages. This ’interception’ is
solved in compile-time. This mechanism is extended to support
remote method invocation in a structure similar to the Bridge
design pattern, represented by classes Proxy and Agent. The
following code fragments show the implementation some the
main classes involved with scenario adapters.



Fig. 3. Scenario adapters implemented in EPOS

template<class Imp>
class Adapter: public Scenario<Imp>, public Imp {

void performAction() {
Scenario<Imp>::enter();
Imp::performAction();
Scenario<Imp>::leave();

}
};

template<class Imp>
struct Traits {

static const bool aspect=false;
};
template<>
struct Traits <Abstraction>{

static const bool aspect=true;
};

template<bool active>
class Aspect{

// Implements an aspect
};
template<>
class Aspect<false>{

// Implements nothing
};
template<class Imp>
class Scenario: public Aspect <Traits<Imp>::aspect>,{

void enter ();
void leave ();

};

Hardware mediators were defined in ADESD as software
constructs that mediate the interaction between operating
system components and hardware components. They allow
system abstractions to be platform independent. Differently
from ordinary HALs, hardware mediators do not consist of a
monolithic layer: each hardware component is mediated via
its own mediator and are organized in families that represent
significant entities. The use of static metaprogramming and
AOP techniques to implement hardware mediators confer them
a significant advantage over VMs and HALs. They are imple-
mented as parametrized classes whose methods are declared
inline and defined with embedded assembly instructions. In
this way, hardware mediators may dissolve themselves in code

and can even avoid the overhead of function calls.
Other important issue is the variability of hardware plat-

forms, or machines. Embedded systems run over different ma-
chines and therefore demands different hardware mediators to
be portable. Specialization, as defined in OOD usually includes
the overhead of polymorphism. EPOS defines classes with
some abstract methods for each hardware mediator, and each
machine implements those methods. Special care are taken to
guarantee that the correct implementation is statically bound
at compile-time, which is done using conditional compiling
techniques.

As a simple example of hardware mediator we present some
aspects of the CPU mediator. In figure 4 is shown the CPU
class, that is the inflated interface that summarizes all CPUs
features. This class can be implemented by one (and only one)
of the specific architectures (IA32, PPC32, SPARC32, AVR8
- event not explicit in that figure, EPOS has been ported to
other architectures too). The method finc, which atomically
increments a value, is shown bellow. finc may use an atomic
assembly instruction, if the architecture has one, otherwise
may produce atomicism by disabling and enabling interrupts.
class CPU_Common { //...

static int finc(volatile int & number) {
int old = number;
number++;
return old;

}
}

class IA32: public CPU_Common {
//...
static int finc(volatile int & value) {

register int old = 1;
ASMV("lock\n"

"xadd %0, %2" : "=a"(old) : "a"(old),
"m"(value));

return old;
}

}

class AVR8: public CPU_Common {
//...
static int finc(volatile int & value) {

int_disable();
register bool old = CPU_Common::finc(value);
int_enable();
return old;

}
}

The use of configurable hardware as platform for embedded
systems, ie, programmable logic devices (PLD) as FPGAs
or ASICs, includes other level of variability on the system.
Thought Design Space Exploration and Hardware/Software
Partitioning techniques, system functionalities can be mapped
into software or hardware. In EPOS, the basic element to be
mapped is a family member component. Components that can
be mapped onto hardware or software are called hybrid compo-
nents. Figure 5 depicts the organization of hybrid components
supported by ADESD. Each hybrid component aggregates
a hardware mediator that interfaces several hardware and
software components. The main challenge is to design the
hardware mediators to construct a repository of components



Fig. 4. CPU hardware mediator

Fig. 5. Hybrid hardware/software component organization

with interfaces that are exactly the same independently if the
component is mapped onto software or hardware.

A software environment supporting ADESD searches the
repository for hybrid components (looking into XML files
that represent dependences over components) and performs
hardware/software partitioning based on the final system costs.
As the final result of this process, the software environment
adjusts a value (HwSw_Impl_Member) in a configuration
file, for each hybrid component, selecting a specific member
implementation. Hybrid components are then implemented as
parametrized classes.

The following code fragments show the example of how
the semaphore abstraction is implemented. The first frame
shows the configuration file and the value adjusted by the
software environment as result of the partitioning process.
In this case, the member 2, which is fully implemented in

hardware, was selected. Second frame shows the parametrized
class Semaphore Imp and the implementation of its v()
method in software (<1>). Note this implementation uses the
finc() method of CPU hardware mediator, presented earlier
in this paper. The third frame shows the implementation of the
mediator for semaphore in hardware (written in VHDL and not
presented here). Note the v() method now accesses memory
mapped registers of a hardware peripheral: the semaphore
in hardware. The last frame shows how the semaphore ab-
straction is statically bound to a Semaphore_Imp class,
using metaprogramming. No overhead at all is inserted in this
process.
//..
template <> struct Traits<Synchonizer> {

static const int HwSw_Impl_Member = 2; //full hw
//...

};

template <int Impl_Member>
class Semaphore_Imp;

template<>
class Semaphore_Imp<1>: public Synchronizer_Common{
// pure software impl.
// ...
void v() {if(finc(_value) < 0) wakeup();}

}

template<>
class Semaphore_Imp<2> { // pure hardware

// ...
void v() {

unsigned int status;
Thread * thr;
*sem_cmd = (0x80000000 | (sem_id<<16));
status = *sem_cmd;
thr = (Thread *)*sem_thr;
if (status& STAT_RESUME) thr->resume();

}
}

class Semaphore: public Semaphore_Imp
<Traits<Synchronizer>::HwSw_Impl_Member> {

public:
Semaphore(int n=1): Semaphore_Imp
<Traits <Synchronizer>::HwSw_Impl_Member>(n){}

};

Software environment for supporting component design
is suit of tools to assist the design of embedded systems
using ADESD and EPOS, and it was divided into four major
modules: Analyzer, Partitioner, Configurator, and Generator.

The Analyser is responsible for identifying what features
are required from the application, and elaborates a requirement
specification that includes methods, types, and constants used
by the application. This module seeks the input for references
to the components’ interfaces (methods that compose the
OS API), what could be done based on high level input
specifications of the system, such as UML or source-code. The
actual implementation of the Analyzer assumes the input is the
application source-code. It applies a technique that involves
the compilation of the application’s source code, a look at
the resulting object files, and the identification of unresolved
symbols (the EPOS API). It’s useful to remember the tool
modules were designed as independent components. It means



that other implementation that reads a XMI file describing the
application (with UML diagrams) could also be used to search
for references to the components’ interfaces and to elaborate
a requirement specification, with no modifications to the tool
chain. A component dependency tree is produced and used to
feed the Partitioner. Multiple project alternatives are coded as
alternative components (nodes) in such structure.

The description of components must be complete enough so
that the Partitioner module will be able to automatically iden-
tify which abstractions better satisfy the requirements of the
application without violating design requirements, generating
conflicts or invalid configurations and compositions. A compo-
nent is defined by a family and its set of members. In addition,
this enriched description can be used to perform design space
exploration. A dependency tree with no alternative components
corresponds to a unique project alternative and features are
used to map how components meet design constraints. The
combination of all possible projects, including possible target-
platforms, forms the design space to be explored.

The description of the interfaces in a family and its members
is the main source of information for the Configurator, but
correctly assembling a component-based system goes far be-
yond the verification of syntactic interface conformance: non-
functional and behavioral properties must also be conveyed.
For this purpose, the component description language includes
two special elements: feature and dependency. These elements
can be applied to virtually any other element in the language
to specify features provided by components and dependencies
among components that cannot be directly deduced from
their interfaces. Enriching the description of components with
features and dependencies can significantly improve the cor-
rectness of the assembly process, helping to avoid inconsistent
component arrangements.

In the last module, the Generator allows the designer to
launch processes that invoke the operating system’s makefiles,
causing the system instance generation, and processes that
invoke synthesis tools that build the hardware platform (if it’s
a FPGA). Also, the application may be compiled by the Gen-
erator with parameters that consider the system that was just
built for it. Our approach aims at generating real systems, not
only simulated ones. Possible implementations of this module
could generate a system’s model at different abstraction levels
(co-simulation models) to provide performance metrics back to
the Partitioner in an iterative process. A limitation of the actual
implementation of the Generator is that it only generates the
final system, composed by a software image and, depending
on the target-platform, also the bit stream file to configure
the FPGA, but it does not simulate the system or obtains
performance metrics. Current developments are creating a new
Generator component to provide such functionality.

IV. CONCLUSION

In this paper we dealt with some problems of developing
and implementing embedded systems. We have briefly shown
the basic concepts of Application-Oriented System Design
methodology that was developed to solve these problems and

we have presented some implementation techniques used to
support it.

In addition to that we have shown a software environment
that assists developers in configuring and generating software
and hardware support for embedded systems taking as base a
collection of reusable hybrid (hardware and software) com-
ponents developed according with the Application-Oriented
System Design methodology, their dependencies, composition
rules and features. The prototype effectively identifies, selects,
configures, adapts, and composes those components, generat-
ing real and functional embedded systems.

REFERENCES

[1] SystemC Documentation.
[2] D. Batory and S. O’Malley, “The design and implementation of hierar-

chical software systems with reusable components,” in ACM Transac-
tions on Software Engineering and Methodology, 1992.

[3] G. Booch, Object-Oriented Analysis and Design with Applications,
2nd ed. Addison-Wesley, 1994.

[4] E. R. Comer, “Domain analysis: a system approach to software reuse,”
in Digital Avionics System Conference, 1990, pp. 224–229.

[5] G. de Micheli, “Hardware synthesis from c/c++ models,” in Design,
Automation and Test in Europe, 1999.

[6] A. A. M. Fröhlich, “Application-oriented operating systems,” Ph.D.
dissertation, Sankt Augustin: GMD - Forschungszentrum Information-
stechnik, 2001.

[7] G. Kiczales, J. Lamping, and A. e. a. Mendhekar, “Aspect-oriented
programming,” Europen Conference on Object-Oriented Programming
in Lecture Notes in Computer Science, vol. 1241, pp. 220–242, 1997.

[8] D. L. Parnas, “On the design and development of program families,” in
IEEE Transactions on Software Engineering, 1997, pp. 23–26.

[9] F. Polpeta and A. A. M. Fröhlich, “Hardware mediators: a portability
artifact for component-based systems,” International Conference on
Embedded and Ubiquitous Computing of Lecture Notes in Computer
Science, vol. 3207, pp. 271–280, 2004.

[10] A. Schulter, R. Cancian, M. R. Stemmer, and Fröhlich, “A tool for sup-
porting and automating the development of component-based embedded
systems,” Journal of Object Technology, vol. 6(9):20, 2007.

[11] G. F. Tondello and A. A. M. Fröhlich, “On the automatic configuration of
application-oriented operating systems,” in 3rd ACS/IEEE International
Conference on Computer Systems and Applications, 2005.

[12] A. S. Vincentelli and J. Cohn, “Platform-based design and software
design methodology for embedded systems,” in IEEE Design e Test,
2001, pp. 23–33.


