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Abstract—Incorporating performance monitoring capabilities
to embedded environments, especially on critical systems such
as Cyber-Physical Systems, requires a negligible intrusion to
ensure the CPS environment performance and data quality. The
monitoring design must be tailored to fit the system’s needs
instead of being limited to a single monitoring approach. In
this paper, we extend a monitoring framework to encompass
three monitoring approaches: Periodic-, Execution-flow-, and
Job-based, focusing on the evaluation of overhead, latency, and
jitter for each of them. We have implemented and evaluated these
approaches over the Monitoring Framework design, where none
of them presented an average impact on the system execution time
higher than 0.3%. While the Job-based monitoring presented
better results in terms of impact over the tasks execution
and memory consumption, the Execution-flow-based monitoring
presented better results for jitter, both on the impact over task
execution time and the monitoring latency.

Index Terms—Performance Monitoring, Monitoring Frame-
work, Time-triggered, Execution-flow-based, Job-based.

I. INTRODUCTION

Embedded systems, such as those handling computer vision
in autonomous vehicles, impose an increasing performance
demand over modern Cyber-Physical Systems (CPS) plat-
forms, which must include complex architectural features to
cope with such requirements (e.g., heterogeneous cores, Single
Instruction Multiple Data (SIMD) units, and task-specific
accelerators interconnected by Network on Chip (NoC) tech-
nology) [1]. These increasing performance demands often in-
clude the inherent timing constraints of real-time systems and
management of limited resources, such as memory, computing
capabilities, and power consumption.

These platforms, however, are highly instrumented cyber-
physical systems that can be monitored and controlled based
on the data they produce during operation [2], [3]. The process
of learning and actuating over a system behavior can be
implemented to improve the system usage based on monitoring
the system performance and the building of Machine Learning
models to actuate on behalf of improvement of performance
and energy consumption [4]–[6], or detect anomalies [7].
Nevertheless, to build reliable models of the system execution,
it is fundamental that the instrumentation used for monitoring
it does not disrupt the system behavior. In other words, the
non-intrusiveness of the monitoring process dictates whether
the Machine Learning models are accurate and the actuation
is reliable.

In previous work, authors introduced a non-intrusive mon-
itoring system capable of sampling data from sensors, per-
formance counters, and Operating System (OS) without dis-

rupting system constraints [8]. The system is able to sample
selected variables in real-time without interfering with the
execution of critical tasks in terms of deadline observance,
jitter, and latency. The small overhead is constant and limited
to specific OS-interaction points and can be modeled as an
additional processing demand to that of tasks to ensure the
system as a whole is still schedulable.

In this paper, we evaluate three different monitoring ap-
proaches. The first one is Periodic monitoring, which sam-
ples according to periodic interruptions. The second one is
Execution-flow-based monitoring, the default configuration of
the monitoring framework, which samples at specific OS
procedures following a pre-defined sampling rate. The third
one is Job-based monitoring, an event-driven solution that
samples whenever a context-switch is performed, maintaining
the sampling process bounded by the task-set configuration. To
perform this evaluation, we extend the aforementioned frame-
work to introduce the ability to sample data according to each
of one the approaches. The evaluation focuses on providing a
comparison in terms of overhead, latency, jitter, and memory
consumption, which are typical metrics to evaluate interference
in CPS platforms. In this way, the main contributions of this
work are:

• A baseline of the performance of the monitoring system
under different monitoring approaches.

• A comparison between the different monitoring ap-
proaches in terms of performance, namely, overhead,
latency, jitter, and memory consumption.

The remaining of this paper is organized as follows: Sec-
tion II presents the related works. Section III describes the
monitoring framework architecture and the implementation of
each of the monitoring approaches. Section IV describes our
Case-Study scenario and the evaluation metrics. Section V
presents the obtained results. Section VI presents reasoning
on the major advantages and shortcomings of each of the
monitoring approaches. Finally, Section VII presents our final
considerations and concludes this paper.

II. RELATED WORKS

Fischmeister et al. [9] present a sampling-based monitoring
solution over an instrumentation framework that extends the
sampling period and reduces monitoring overhead. In their
approach, the instrumentation is based on control-flow graphs.
Following the control-flow graph-based instrumentation, Wu
et al. [10] propose a hybrid monitoring by combining event-
and time-triggered monitoring to support Runtime Verification
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techniques. The main goal of the hybrid approach is to avoid
redundant sampling of time-triggered monitoring that does not
capture any new critical event in the system while avoiding
a frequent monitor activity on periods with a higher rate of
critical events occurrences. This is done through a mode-
switching optimization heuristic. The optimization heuristic is
built on the control-flow graph and the associated cost of the
monitoring operations (event monitoring, periodic monitoring,
and mode-switch). Our work also evaluates time-triggered
monitoring, but we differ by evaluating two different moni-
toring approaches, the execution-flow- and job-based.

Woralert et al. [11] presents and measures the overhead of
a periodic sampling mechanism (K-LEB, Kernel - Lineage
of Event Behavior). They show that by operating as a kernel
module the proposed mechanism is able to monitor at high fre-
quencies and with a lower overhead when compared with user-
level monitoring tools. In this paper, each of the monitoring
approaches are integrated directly to the operating system that
mediates the CPS platform. Therefore, we also take advantage
of the highest-resolution timer available. Moreover, in this
work we measure the impacts of three different monitoring
approaches and compare their overhead in terms of time and
memory.

Leng et al. [12] applied the monitoring of the performance
counters to extract fingerprints of the system execution. They
selected a set of counters composed of the number of com-
mitted instructions, the number of function calls, the number
of integer instructions, and the number of load instructions.
They executed fault-free versions of the chosen tasks to obtain
the initial execution profiles using the selected counters. They
traced the chosen performance counters values following a
sample interval of 10ms, which is equivalent to a 100Hz
rate. They tried two different monitoring methods, periodic
sampling, and per-task-like sampling. They concluded that
when performing per-task-like monitoring, they can detect
abnormalities on system execution but lose the ability to
determine when such abnormal behavior happens.

Aliabadi et al. [13] proposes a monitoring solution for
Intrusion Detection in Cyber-Physical Systems addressing low
overhead for both memory and time aspects. In their solution,
the monitoring approach perform captures at a small set of
locations or features defined during design-time. They reduce
the overhead and memory by implementing a feature selec-
tion technique regarding attacks coverage. The selection is
performed by evaluating the accuracy of a Bayesian Network
over the detection of injected faults using inferences of full
coverage of detection given a set of partial information. Thus,
their solution follows a execution-flow based monitoring while
addressing low overhead by reducing the amount of features
necessary to solve the problem under investigation.

Run-DMC [6] is a runtime dynamic performance and power
estimator for Heterogeneous Multicore platforms. Run-DMC
is designed for non-real-time scenarios and is implemented
over a Linux kernel. The method aims at thread-level pre-
diction for both Instructions per Cycle (IPC) and Dynamic
Power (DP) based on Least Square Method over performance
counters. In their proposed solution, performance counters are
sampled on a task basis. They sample at the granularity of

tasks context-switch, where the information is fetched and
summed up at thread-specific accumulators. In the worst-case
scenario evaluated for Run-DMC [6], incurred on a maximum
sampling overhead of 7µs, 44µs, and 70µs, on a 4, 8, and
16 thread scenarios, and up to 869µs per actuation (sensing,
estimation and prediction, optimization, and thread mapping).
The same approach is also used in Donyanavard et al. [5] work,
named SPARTA, a runtime, throughput-aware, energy-efficient
task allocation system integrated into the Linux scheduler for
heterogeneous scenarios, which presented an average sampling
overhead of 28µs on all cores.

In [14], the authors propose a reinforcement learning solu-
tion to optimize thermal management in Embedded Systems.
In this scenario, PMU counters and Temperature sensors are
sampled periodically on a CPU-based sampling that encom-
passes a hyper-period. They demonstrate that the proposed
reinforcement learning resulted in low overhead, requiring
2.5µs to 8µs to collect data at each period. However, they limit
their analysis to CPU-based sampling in a long-term interval,
which is unsuitable in some scenarios, like anomaly detection,
where a fine-grain sampling is required.

Merkel et al. [15] propose a co-scheduling approach con-
sidering shared resources contention, implemented over Linux.
They base their solution on monitoring Memory Bus Access,
Level 2 Cache Access, and Committed Instructions rate to
build an activity vector for each task. The activity vectors are
updated every timer interrupt and every task switch, where
the authors measured the cost for reading a performance
monitoring counter to be 54 cycles on the chosen platform
and did not observe any runtime increase into the execution
time of the benchmarks.

III. ARCHITECTURE

The analysis presented in this paper builds upon a non-
intrusive monitoring system introduced by the authors in a
previous work [8]. In this section, we recapitulate the main
elements in that design and extend the framework to include
Periodic and Job-based sampling.

A. Monitoring System

The Monitoring Framework [8] under investigation in this
paper is part of a scheduling framework that supports the
design of domain-specific, low-overhead resource schedulers
for critical systems. The main idea for the modeling of the
monitoring framework is to provide the user with a simple
and lean mechanism to control the sampling of performance
data at runtime while abstracting the different characteristics
of the myriad of data sources (e.g., OS variables, hardware
counters, and sensors), without disrupting the timing behavior
of the system being monitored.

The monitoring framework is modeled around two con-
structs, an interface that abstracts the different data sources
and a monitoring manager, namely, Clerk and Monitor. In this
sense, the Clerk provides a common interface to configure
the data source and acquire data. The Monitor collects data
using the Clerks and automatically timestamps them with
the highest-resolution timer available on the platform. The
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specified Clerks and monitoring policy are used to instrument
the resulting scheduler at compile-time with data sampling
operations at pre-defined points of interest. Points of interest
are defined by the framework for all the traditional scheduling
operations, including allocation, mapping, dispatching, and
accounting.

As part of a framework that supports low-overhead resource
schedulers for critical systems, the Monitoring Framework
addresses non-intrusiveness with a set of design decisions and
their implications. The data structures that are used to store
sampled data have fixed sizes and are defined at compile-time.
The Clerks and data structures are initialized during the OS
boot time, i.e., prior to the execution of the tasks. The code
is generated with templates and all data captures execute the
same procedure, avoiding incurring jitter. The buffer indexing
is direct and the operation to check conditions to perform the
data sampling are constant, which reduces jitter to a matter
of capturing data or not. Moreover, the data sampled during
execution is processed after the system execution or during
the system’s free time.

Finally, as previously mentioned, the Monitoring Frame-
work is part of a scheduling framework [8]. In this scheduling
framework, a scheduling policy is implemented through a
parameterized class that models traditional scheduling oper-
ations interacting with the scheduling queues [16] that have
their ordering criteria given as the specialization of a generic
criterion that provides the ranking algorithm. The integration
of the Monitoring Framework to this scheduler design allows
one to use the data collected by the Monitor to learn patterns
from the performance traces that are sampled during the
very-own system execution and model a scheduling criterion
that uses Clerks and Monitors to actuate during the system
execution to control platform configuration, task distribution,
and other execution aspects.

B. Execution-flow-based Monitoring

This approach consists of taking advantage of the interac-
tions of the OS on the execution by using pre-defined points
of interest (see Section III-A) to perform data acquisition. In
Execution-flow-based monitoring, data captures are triggered
whenever the system execution reaches any point of interest.
However, data is only acquired when the specified sampling
rate is respected (i.e., the time spent between two data acqui-
sitions is higher than or equal to the period specified to the
Monitor).

C. Periodic Monitoring

Periodic monitoring consists of periodically interrupting the
system execution to perform data acquisition. In this case, the
point of interest to be instrumented is the function that handles
this specific timer interruption designated to perform the data
sampling. In this approach, the sampling rate defines the timer
period and no extra condition needs to be checked when data
capture is triggered (e.g., the sampling rate verification used
in the Execution-flow-based monitoring).

Periodic monitoring is implemented in the Monitoring
Framework by adding a periodic timer that triggers data

acquisition instead of relying on reaching specific points of
interest to capture the current system behavior. The periodic
timer can be implemented either at the Clerk or the Monitor. At
the Clerk, it is possible to customize different periods to each
Clerk currently monitored. However, adding a specific timer to
each Clerk does not scale for dissonant periods, as it may lead
to trashing the system performance due to a higher interruption
rate. On the other hand, adding a timer at the Monitor issues
a single interruption that samples all the Clerks.

For the experiments conducted in this paper, Periodic mon-
itoring is implemented by adding a timer to the Monitor. The
timer is configured at boot time according to the specified
sampling rate, and the handler for this timer is configured to
trigger the data acquisitions. The customization of each Clerk’s
sampling rate is still possible at this level. This is done by
setting the timer periodicity to the greatest common divisor of
all Clerks’ sampling rates. However, the periodicity precision
is negatively affected when the sampling rates are dissonant
(e.g., prime numbers), and should be avoided.

D. Job-based Monitoring

This monitoring approach consists of sampling data accord-
ing to the execution of the jobs into the system. In this way, a
sample is collected whenever a job ends its execution, and the
sample is linked to the task whose job’s behavior it represents.

This approach is implemented by declaring separated
buffers for each of the tasks and configure the moment a
context switch is going to be performed as the point of interest
to be instrumented. In this way, every reschedule incurs in data
acquisition and no condition is checked for the sampling rate.
When a job is scheduled, the behavior of the job previously
executing is sampled and the measures are accumulated in
the temporary buffers until the job finishes its execution,
which triggers the storage of the temporary values on the
Monitor buffers. Algorithm 1 depicts the Job-based monitoring
implementation.

Algorithm 1 Job-based Data Acquisition Implementation
1: procedure collect ( )
2: for each c ∈Monitor::Clerks do
3: prev.data[c] += c.read()
4: − prev.data accum[c]
5: next.data accum[c] = c.read()

6: if Sampling Trigger then
7: Monitor :: capture()

IV. CASE STUDY

In order to evaluate the effectiveness of each of the monitor-
ing approaches implemented on the Monitoring Framework,
we executed a case study using a representative task-set
composed of memory-bound, CPU-bound, and mid-term tasks
over an embedded multicore platform.

A. Platform Setup

The selected platform to evaluate the approaches is a
Cortex-A53 processor, a widely used quad-core processor for
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embedded systems. The Cortex-A53 has four homogeneous
cores with frequency ranging from 0.6-1.2GHz, an 8-stage
pipeline with two issued instructions per cycle, a coherent
Level 1 (L1) private Cache of 32KB (16KB for Instructions
and 16KB for Data), and a shared coherent L2 cache of
512KB. For the experiments conducted on this paper, the
CPUs were set to the frequency of 0.6GHz.

The platform is mediated by the Embedded Parallel Operat-
ing System (EPOS - https://epos.lisha.ufsc.br/), which imple-
ments the monitoring framework presented in Section III-A.
From hardware performance counters, Cortex-A53 has support
to ARM Performance Monitoring Unit (PMU)v3 architec-
ture [17], which provides 54 PMU events (e.g., Cycle Count,
Committed Instructions, Branches, and Cache access). A full
list of the available counters can be found at Cortex-A53
Technical Reference Manual [17]. Moreover, the PMU of
Cortex-A53 enables up to six performance counters to be
simultaneously monitored.

B. Task-set Setup

The experiments conducted in this paper use a synthetic
task-set with distinct performance behavior, enabling a repre-
sentative scenario for multicore real-time embedded systems.
Moreover, the task-set also includes scenarios with concurrent
architectural usage (i.e., Level 2 caches). In this way, we can
evaluate the overhead of the monitoring system on a broader
range of tasks. The following tasks composed the case-study
task-set:

• Bandwidth is a benchmark implementation based
on [18]. Bandwidth focuses on memory stressing and is
tailored to constantly perform read and write operations
in a data structure with at least the size of L2 Cache
(512KB in our platform).

• Disparity map is a task from San-Diego Visual Bench-
mark Studio [19], representing a real workload task of
embedded systems. Disparity Map is widely used for
embedded vision applications in autonomous vehicles,
like cruise control, pedestrian tracking, and collision
control.

• CPU Hungry is a loop function executing mathematical
operations using Arithmetic Logical Unit (ALY). Our
implementation is based on iterative Fibonacci.

This synthetic task-set is based on the one used in [4] to depict
a representative set of tasks for multicore real-time embedded
systems, in which the behavior of the task is affected by shared
resource contention due to the parallelism of Bandwidth and
Disparity map tasks.

The underlying OS was set to schedule tasks following
Partitioned scheduling with Earliest Deadline First (EDF)
criterion to define tasks priority. Additionally, the scheduler
was configured to run with a periodic scheduling verification
every 10ms. The task-set configuration is depicted in Table I,
where, in this scenario, tasks have their Deadline equal to
their Period. Moreover, we have considered CPU0 as the CPU
that handles all the system interrupts on the selected OS,
possibly affecting the performance measurements of each of
the monitoring approaches due to the extraneous interruptions.

Thus, CPU0 measurements were discarded, and only CPUs 1
to 3 run the task-set.

TABLE I
TASK-SETS CONFIGURATION.

CPU Period/WCET Task Parallel to

1 500ms/100ms T1 Bandwidth T3, T5
500ms/200ms T2 Disparity T4, T6

2 500ms/200ms T3 Disparity T1, T5
500ms/200ms T4 CPU Hungry T2, T6

3 500ms/200ms T5 CPU Hungry T1, T3
500ms/200ms T6 Disparity T2, T4

C. Evaluation Metrics

To evaluate the level of intrusion added to the embedded
system, five metrics were selected to describe the impact on
the system execution, mainly regarding its temporal behavior
and memory usage. They are:

• System Overhead: The overhead Om on the system is a
measure of the extra time added to the system execution
when enabling data acquisition through the monitoring
m. Instead of measuring the overhead added on specific
OS operations, we can in fact measure the overall impact
m introduced in the system execution by comparing the
accumulated idle time (i.e., the amount of time the CPU
expends idling during the system execution, also called
free time) with and without m. Thus, we can measure
the overhead Om as I − Im, where I is the accumulated
idle time with m disabled and Im with m enabled.

• Task Overhead: The task overhead αt is a measure of the
extra time added to the specific task execution. This mea-
sure is obtained by monitoring the task execution time.
The task overhead is given by αt = AETt,m − AETt,
where AETt represents the task Average Execution Time
(AET) with m disabled and AETt,m with m enabled.
This measure is focused on capturing the impact of
possible preemption made to run the monitor (e.g., when
running with interrupts enabled) and the architectural
impact of the monitoring execution. Lastly, the task
overhead metric is divided into three measures, one for
each of the tasks: αcpu for the CPU-bound (i.e., CPU
Hungry), αmem for the memory-bound (i.e., Bandwidth)
αmid for the mid-term one (i.e., Disparity).

• Latency: The latency Lm of the monitoring approach m
is a measure of the average execution time taken by the
data acquisitions performed by m. Thus, the latency of
m can be defined as Lm = 1

N

∑N
i=1 ti, where ti ∈ Tm,

Tm is the set of the measured execution time of the data
acquisitions performed by m, and N = |Tm|, the number
of data acquisitions performed.

• Jitter: The Jitter Jm of the monitoring approach m is
measure as Jm = stdev(ti ∀ ti ∈ Tm).

• Memory Consumption: The memory consumption Mm

of the monitoring approach m is the amount of memory
required by the data structures used by m to compute and
store the samples.
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D. Monitoring Setup

Each of the monitoring approaches was configured to sam-
ple seven different Clerks simultaneously, six of which for
PMU performance counters and an extra one for the running
task’s identifier, exploring the maximum capacity of the PMU
while tagging the samples with an identifier for the running
task. In addition, the Monitor automatically timestamps sam-
ples with the highest resolution timer available on the platform.
In the following, we describe the specific configurations for
each of the monitoring approaches in terms of sampling rate
and the expected number of captures, considering 30-seconds
executions.

1) Execution-flow-based: The Execution-flow-based moni-
toring’ sampling rate is dependent on the frequency the system
execution passes through a point of interest. Considering the
configured scheduler, this period is expected to not exceed
10ms. Therefore, the sampling rate s for the Execution-
flow-based monitoring was set to 100Hz. In this way, given
an execution length of 30 seconds, the expected number of
samples to be collected is given by Θs = Θe ∗ 1/s ∗ CPUS,
where Θe is the length of the execution, and CPUS is the
number of monitored CPUs. Thus, for the task-set depicted in
Table I, Θs = 9000, i.e., the product of the sampling rate and
execution time.

2) Job-based: As described in Section III-D, Job-based
monitoring does not require the specification of a sampling
rate for each Clerk. Instead, a sampling approach must be
specified. In this case study, a sample is taken for each job
of a task. This is done by accumulating the Clerks every time
a context switch is performed and capturing the sample at
the end of a job. This is implemented on the underlying OS
by setting the Sampling Trigger in Algorithm 1 to verify
whether the job execution has finished, for instance, checking
if the state of the job leaving the CPU is to wait for its next
period to start.

In this sense, the expected number of samples for a Job-
based monitoring is given by Θs =

∑N
i=1

Θe

Ti.P
, where N

is the size of the task-set, and Ti.P is the period of the ith
task in the task-set. Thus, for the task-set depicted in Table I,
Θs = 360.

3) Periodic: In opposition to Execution-flow-based- and
Job-based monitoring, Periodic monitoring has no inherent
limitations in terms of the maximum sampling rate. Instead of
such limitation, as previously mentioned, the Periodic mon-
itoring approach configures a timer to trigger data sampling
according to the desired sampling rate. In order to conduct
a fair comparison in terms of the chosen metrics IV-C, the
Periodic sampling rate was set to 100Hz. In this way, the
expected number of samples is equal to the Execution-flow-
based approach, where for the task-set depicted in Table I,
Θs = 9000.

V. RESULTS

Each of the metrics was evaluated for both all the moni-
toring approaches and the baseline configuration. Considering
the execution time of each execution (i.e., 30 seconds), and
the task-set configuration I, each task is scheduled to run 60

times per execution. Additionally, a set of 10 executions were
collected for each of the monitoring approaches, providing
a total of 600 measurements for the tasks’ execution time.
In the following subsections, we analyze each of the metrics
evaluated.

A. Memory Consumption

In terms of memory utilization, as described in Sec-
tion III-A, all the data structures required for the execution
of the monitoring system (e.g., Clerk’s buffers) are statically
allocated during OS’s boot time, which allows us to estimate
memory consumption before the system execution based on
the expected number of samples to be collected during run-
time. As previously mentioned, the monitoring system tags
the data with high-resolution timestamps, which use 8 bytes.
Moreover, in this architecture, PMU performance counters
readings are given in 64 bits (8 bytes) unsigned integers.
Let us consider the union of a timestamp and a data point
as a Snapshot. In this way, the memory consumption for
each monitoring approach is given by equation (1), where
C is the number of monitored Clerks. The resulting memory
consumption for each of the monitoring approaches is depicted
in Table II.

Mm = Θs(m) ∗ |Snapshot| ∗ C (1)

Moreover, for Job-based monitoring, an auxiliary accumu-
lator is needed, as depicted in Algorithm 1. Thus, for the Job-
based monitoring, the memory consumption is given as:

MJob−based = Θs(m)∗|Snapshot|∗C+ |Data|∗C ∗N (2)

where N is the number of tasks in the system.

TABLE II
MEMORY CONSUMPTION
Method Memory

Execution-flow-based 984.4 KBytes
Periodic 984.4 KBytes

Job-based 39.7 KBytes

B. System Overhead

The system overhead is measured as the impact on the idle
time of the system, as described in Section IV-C. To estimate
this impact, we first calculate the average CPU time of each
of the cores during all executions, where the CPU time of
execution is defined as the sum of all the execution time of
the jobs running on a core (3).

CPU time(x, k) =

n jobs∑
i=1

time(ji), ∀ job j

| j ∈ CPUx, k (3)

where, x is the CPU number, and k is the execution number.
Table III presents the results for CPU time for each of the

executing cores on each of the monitoring approaches. Once
the average CPU time is obtained, Idle time on a core is
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defined as the expected execution time of 30 seconds minus
the average CPU time of this core (4).

Idle time(x) = 30s−
∑k

i=0 CPU time(x, i)

k
(4)

where k is the number of executions of the system.

TABLE III
CPU TIME

CPU Method Avg. Time Std. Dev.

1

Baseline 17817796µs 0.4191%
Execution-flow-based 17683931µs 0.4333%

Periodic 17651836µs 0.4516%
Job-based 17609303µs 0.4568%

2

Baseline 23682966µs 0.0035%
Execution-flow-based 23779260µs 0.2745%

Periodic 23711761µs 0.0538%
Job-based 23701492µs 0.2050%

3

Baseline 23140117µs 0.0219%
Execution-flow-based 23169998µs 0.0708%

Periodic 23152417µs 0.0633%
Job-based 23111943µs 0.0677%

Table IV presents the results for the Idle time for each
of the executing cores on each of the monitoring approaches.
With the average Idle time calculated for all cores, system
overhead is calculated according to IV-C. Table V depicts the
average of the system overheads on the average Idle time.

TABLE IV
IDLE TIME

CPU Method Avg. Idle Time

1

Baseline 12182204µs
Execution-flow-based 12316069µs

Periodic 12348164µs
Job-based 12390697µs

2

Baseline 6317034µs
Execution-flow-based 6220740µs

Periodic 6288239µs
Job-based 6298508µs

3

Baseline 6859883µs
Execution-flow-based 6830002µs

Periodic 6847583µs
Job-based 6888057µs

TABLE V
SYSTEM OVERHEAD

Method CPU System Overhead Avg. Impact

Execution-flow-based
1 −133865µs

0.2870%2 96294µs
3 29881µs

Periodic
1 −165960µs

0.1248%2 28795µs
3 12300µs

Job-based
1 −208493µs

−0.1540%2 18526µs
3 −29174µs

C. Task Overhead

The Task Overhead αt,m on a task type t caused by the
monitoring approach m is given by the average overhead on
each instance of such task. Table VI presents the AET for
each task considering a baseline (i.e., without monitoring) and
each of the monitoring approaches. The table also presents the

standard deviation of the tasks AET. This metric demonstrates
the variability imposed into the execution of these tasks.
Moreover, the table also includes the proportional overhead
for each task when compared to the baseline AET.

The average overhead of T4 and T5 composes the overhead
of the CPU-bound tasks αcpu,m, while T2, T3, and T6
compose the average overhead of mid-term task αmid,m, and
T1 the overhead of Memory-bound tasks αmem,m, as T1 is
the only instance of this type of task. The αt,m for each task
and monitoring approach is presented in Table VII.

TABLE VI
TASK OVERHEAD

Task Method AET Std. Dev. Overhead

T1

Baseline 99427µs 0.1844% −
Execution-flow-based 96857µs 0.1564% −2.5848%
Periodic 95968µs 1.3910% −3.4789%
Job-based 98498µs 0.3648% −0.9344%

T2

Baseline 198498µs 0.0937% −
Execution-flow-based 196612µs 0.0515% −0.9501%
Periodic 196390µs 0.0750% −1.0620%
Job-based 195772µs 0.0884% −1.3733%

T3

Baseline 200429µs 0.0604% 0%
Execution-flow-based 201184µs 0.0564% 0.3767%
Periodic 200205µs 0.3436% −0.1118%
Job-based 201037µs 0.0692% 0.3033%

T4

Baseline 194292µs 0.0011% −
Execution-flow-based 194551µs 0.0109% 0.1333%
Periodic 194489µs 0.0246% 0.1014%
Job-based 194303µs 0.0021% 0.0057%

T5

Baseline 194293µs 0.0011% −
Execution-flow-based 194596µs 0.0111% 0.1560%
Periodic 194431µs 0.0283% 0.0710%
Job-based 194307µs 0.0020% 0.0072%

T6

Baseline 194561µs 0.4191% −
Execution-flow-based 194362µs 0.4333% −0.1023%
Periodic 194843µs 0.4516% 0.1449%
Job-based 193876µs 0.4568% −0.3521%

TABLE VII
OVERHEAD PER TASK TYPE

Task Type Execution-flow-based Periodic Job-based
CPU-bound 0.1446% 0.0862% 0.0064%

Memory-bound −2.5848% −3.4789% −0.9344%
Mid-term −0.2252% −0.3429% −0.4740%

D. Monitoring Latency and Jitter

The latency of each monitoring approach Lm on a given ex-
ecution is calculated following the description in Section IV-C.
The average monitoring latency considers the average Lm on
all different executions. In this sense, jitter Jm is calculated
using the values observed on all executions and the formu-
lation on Section IV-C. The results for latency and jitter are
presented in Table VIII.

TABLE VIII
MONITORING APPROACH LATENCY AND JITTER

Method Latency Jitter
Execution-flow-based 5µs 1.9461µs

Periodic 6µs 2.0924µs
Job-based 3µs 2.1482µs
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VI. DISCUSSION

When designing the monitoring approaches over the Mon-
itoring Framework proposed in [8], Execution-flow-based
stands out as an approach less intrusive than adding inter-
ruptions. However, it does not guarantee an exact moment
the sampling will be taken considering its sampling rate,
as it only collects data when the system execution passes
through a point of interest. In terms of computation at each
data acquisition, the least amount of computation performed
on Execution-flow-based monitoring is the sampling rates
verification itself, which, in this case, is represented by
Period+ Last Capture < Tnow.

On the other hand, the Periodic approach is more deter-
ministic in terms of sampling periodicity, as it incurs an
interruption every period. Nevertheless, it can interfere with
the execution of a critical task or even trash the system
execution if the sampling rate of each Clerk is dissonant. The
Job-based is the one with fewer interactions with the system,
incurring into a data acquisition only at context-switches.

We choose to perform separated monitoring approaches
once we aim at assessing the overhead of each specific
technique. Therefore, we did not address mixed sampling ap-
proaches, such as [10], which adopted two monitoring policies
that are executed in different moments of the execution. More-
over, when considering an event-driven trigger for monitoring,
the execution-flow monitoring approach performs similarly to
the hybrid methods proposed by [10], once periodic sampling
will be dismissed whenever a sufficiently close event-driven
capture was recorded. Other than that, control-flow graphs are
not easily generated for complex multicore real-time systems
and all our monitoring approaches are independent of such
mechanisms.

In terms of memory consumption, Job-based monitoring
consumes significantly less memory for data storage (nearly
96% less), presenting a trade-off between granularity of col-
lected data and memory consumption. For some domains of
application regarding the monitored data usage, such loss on
data granularity are not ideal. For instance, Leng et al. [12]
claim that Job-based monitoring allowed anomaly detection
but without the ability to determine the moment an abnormal
behavior happens. On the other hand, works on performance
optimization, like SPARTA [5], RMC [6], and Hoffmann and
Fröhlich [4], demonstrate the ability to learn system behavior
and actuate based on Job-based monitoring. Nevertheless,
memory consumption tends to be a limiting factor only for
very limited architectures or for sufficient long executions.
Furthermore, for runtime actuation, the memory consumption
is usually considerably reduced in every monitoring approach,
as only data required for actuation is kept in memory.

Due to the characteristics of each approach configuration,
Execution-flow-based and Periodic approaches perform the
same number of captures. This is demonstrated in Sec-
tion IV-D, where Θs for both monitoring approaches were
equal.

The results in terms of overhead are related to the number
of times data is collected. The Job-based sampling implies
a data acquisition only when a context switch is performed,

thus, fewer data acquisitions are performed when compared
to the other approaches. Moreover, Periodic monitoring deals
with timer handling, and Execution-flow-based deals with time
condition checking, increasing their latency when compared
with the Job-based one, as presented in Table VIII.

The presence of negative overheads shown in Table VII
for the Memory-bound and the Mid-term tasks is partially
explained by the presence of resource contention between
these tasks for the shared L2 Cache and memory buses.
Shared resource contention is an issue commonly observed
in multicore scenarios, especially for memory-bound tasks
concurrency over shared elements of the Memory hierarchy
like caches [20], [21]. The task-set used in this case study
(Table I) is an example of a task-set with shared resource
contention over the Memory Bound task (Bandwidth) and the
Mid-term task (Disparity). The contention over these tasks has
already been explored by other works [4], [22], which shown
to be advantageous to avoid the parallel execution of these
tasks.

The presence of the Monitoring Framework, and subse-
quently, of the monitoring approaches incur on extraneous
computation to be performed at each interaction point (e.g., in-
terruptions, dispatches, context-switches), which, even though
presenting a negligible latency, as presented in Table VIII),
still presents effects over the contention by reducing the time
these two tasks interacted.

Regardless of positive or negative overhead, the less intru-
sive monitoring approach is the one with the task overhead
closer to 0. Table VII shows that the Job-based approach is
the one that yields the overhead per task type closest to 0,
except for the Mid-Term task. So, when comparing to the
Execution flow-based and Periodic monitoring, it provided the
task behavior closest to the original. This is expected since
this approach is the one that performs the lowest amount
of data acquisitions overall. Nevertheless, in terms of jitter,
Execution-flow-based monitoring achieved the best results for
both Memory-bound and Mid-term tasks, as shown by the
Standard Deviation column in Table VI.

The main difference when comparing Execution-flow-based
to Periodic monitoring is the additional interrupts incurred
by the Periodic monitoring, as Execution-flow-based takes
advantage of the very own OS interactions to perform the
data acquisition. The impacts of such difference are depicted
by both monitoring latency and jitter and at the tasks aver-
age execution time standard deviation, where Execution-flow-
based presented a lower standard deviation for all tasks when
compared to the Periodic monitoring.

Execution-flow-based monitoring yields the best results
regarding jitter in both system’s and tasks’ overhead at the cost
of incurring a 67% higher monitoring latency when compared
to Job-based. It also presents a significantly higher impact on
tasks execution time regarding the baseline average for both
CPU- and Memory-bound tasks. Nevertheless, it presents the
smallest impact for the Mid-term task.

VII. CONCLUSION

In this paper, we evaluated the impact of monitoring the
system behavior through a monitoring framework configured
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under three different data sampling approaches, namely Pe-
riodic, Execution-flow-based, and Job-based sampling. The
evaluation was performed through a set of metrics, including
jitter, latency, overhead, and memory consumption, that were
measured on executions that account for memory-bound, CPU-
bound, and mid-term tasks.

The results obtained point that the intrusion levels for
any of the monitoring approaches are low. In fact, none of
them presented an average impact over the system execu-
tion time higher than 0.3%. Job-based monitoring presented
better results for overall overhead and memory consumption.
However, its usage depends on the application goal since
it implies a trade-off between performance and data gran-
ularity. For sampling in higher frequencies, Execution-flow-
based monitoring achieved the lowest jitter for the average
execution time of every task when compared with the Periodic
monitoring. For CPU-bound ones, Job-based shown the lowest
jitter. When analyzing the impact on tasks execution time,
Execution-flow-based monitoring also presented better results
over the Periodic monitoring for the tasks affected by shared-
resource contention. However, it is important to remember
that, the Execution-flow-based monitoring is dependent on the
OS behavior since data acquisition is only executed when a
point of interest is reached by the execution, which limits the
maximum sampling rate.

The low interference presented by the monitoring ap-
proaches are mostly due to the low-intrusiveness aimed at the
design of the Monitoring Framework itself, including statically
allocating data structures at OS boot time, statically instru-
menting code on already known OS interactions points (except
for periodic monitoring), and processing data speculatively at
the idle time or the end of the execution.

Future works include the extension of this evaluation for
different sampling approaches such as hybrid ones. Moreover,
extending the evaluation for ML models running over each of
the monitoring approaches, for instance, obtained ML results
and performance to assess the relation between data quality
and monitoring overhead as well as assessing the impacts
generated by each of the ML algorithms.
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