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ABSTRACT 

Embedded systems and high-level languages usually belong to different worlds. It is not easy to fit a language runtime 

environment to a strongly constrained embedded platform. This porting mostly causes a loss of functionalities. High-level 

languages need large support from lower-level hardware or software so they can work. This paper describes our work to 

port the Lua Virtual Machine (LVM) to the Embedded Parallel Operating System (EPOS), making possible the execution 

of applications written in a high-level language such as Lua on embedded systems. The final system with support for all 

Lua libraries has less than 155 KB of size, which makes it suitable for a large amount of embedded systems. More than 

that, our tests showed that LVM runs faster on EPOS than on a Linux distribution.  

KEYWORDS 

Embedded System, Virtual Machine, High-Level Language, Lua 

1. INTRODUCTION 

High-level languages provide a vast set of abstractions to ease the development of applications. These 

abstractions are only possible with a considerable runtime support by the operating system and the hardware. 

Virtual machines are increasingly providing this type of support, although they require considerably more 

resources than usual, often impacting applications performance beyond the acceptable. Embedded systems 

can hardly afford such resources (Koshy et al, 2009). Sensor networks, for example, are a domain 

characterized by resources that are orders of magnitude smaller than what ordinary virtual machines require 

(Levis and Culler, 2002). 

Therefore embedded systems and high-level languages usually belong to different worlds. It is not easy to 

fit the runtime environment of a programming language to a strongly constrained embedded platform. This 

porting mostly causes a loss of functionalities (Caracas et al, 2009). Additionally, languages also have tools 

specially designed for general-purpose computers, and some abstractions are useless or less important in 

embedded systems, and their support could be simplified. Our ultimate goal is to understand the 

environment's behavior, and then remove any unnecessary overhead. Without that overhead, the use of high-

level languages in embedded systems would become reality. We want to change this scenario, by analyzing 

all the abstractions between application and hardware, and trying to reduce the gap between them. 

This work specifically describes the adaptations in the Lua Virtual Machine (LVM) for the Embedded 

Parallel Operating System (EPOS). Existing embedded virtual machines are usually a subset of a desktop 

virtual machine. These embedded virtual machines normally do not provide features that are hard to 

implement on resource-constrained embedded systems. This approach eventually impacts execution time, 

since the virtual machine was not previously designed for this environment (Caracas et al, 2009). However, 

we decided to work on Lua because the LVM is a lightweight virtual machine written in C, and it is portable 

as far as it concerns the hardware and operating system support for libc (Ierusalimschy et al, 2007). 

Nonetheless, the LVM normally requires support to some functionalities that are not used by any Lua 

application running on EPOS, such as software localization, modules loading, and access to environment 

variables and external commands. These features were removed. To give a shape to the remaining features, 



we defined a Lua profile, in which we create a set of available resources for the embedded version of LVM. 

This Lua profile aims to help Lua developers to understand the functionalities LVM provides for embedded 

Lua applications. 

The rest of the paper is organized as follows. Section 2 describes related works on interoperability 

between high-level languages and embedded systems. Section 3 describes the support required by LVM, and 

what EPOS could provide. It also describes how we solved the problems of functionalities LVM needed but 

EPOS could not provide. Section 4 summarizes our Lua Profile, and Section 5 presents the evaluation of our 

embedded LVM in terms of size and performance. Section 6 concludes the paper and describes future works. 

2. RELATED WORK 

High-level languages are becoming more popular in embedded systems because they provide useful 

programming abstractions such as object-orientation and multi-threading (Ishikawa and Nakajima, 2005). 

However, embedded systems are characterized by great architectural diversity. This can be tackled by virtual 

machines, at the expense of impacts in performance. Various techniques have been developed in order to 

reduce this performance gap between native and virtual execution environments (Koshy et al, 2009). 

There are different approaches for virtual machines: virtualizing real hardware, virtualizing intermediate 

program representation and virtualizing bytecode interpretation (Costa et al, 2007). We are focusing our work 

in virtual bytecode interpretation. This set of virtual machines can be classified in two classes. The first class 

targets middleware by position between operating system and applications. They are called middleware level 

virtual machines. The second replaces the entire operating system. They are called system level virtual 

machines (Costa et al, 2007). Since LVM does not replace the operating system, it is a middleware level 

virtual machine. In fact, EPOS is our operating system. 

High-level languages have abstractions that require special support from the virtual machine (Koshy et al, 

2009), but using virtual machines in embedded systems has some pros and cons. They enable higher levels of 

abstraction, but they also have to care about the execution model. LVM has a straightforward execution 

model, which did not have to be changed. LVM is a register-based virtual machine, unlike most of the 

current middleware level virtual machines for bytecode interpretation. This type of virtual machine can be 

implemented to be faster than stack-based virtual machine. This approach has been rewarding, since 

programs require far less instructions in order to execute a task (Shi et al, 2005). 

The Mote Runner virtual machine is an interesting approach because it was created from scratch and it 

supports more than one language (Caracas et al, 2009). However, its implementation removes some features 

from its supported languages, e.g. threads, floating point arithmetic, some data types, multi-dimensional 

arrays, and introduces the event-driven programming paradigm, hence causing a negative impact on the 

application portability. Mote Runner only supports strictly-typed languages, unlike our approach (Caracas et 

al, 2009). Our approach does also remove some features, but only those that would not be used on an 

embedded system, such as software localization, dynamic module loading, and access to environment 

variables. 

There are other virtual machines, such as VM* and EarlGray, with different approaches on Java Virtual 

Machines. VM*, specifically, focuses on optimizing a Java Virtual Machine for wireless sensor networks 

(Koshy et al, 2009). However, most of its optimizations are already used in the LVM or change the 

language’s functionalities, hence impacting its portability. EarlGray is a Component-based Java Virtual 

Machine, therefore focusing on modularization (Ishikawa and Nakajima, 2005). This modularization is 

achievable through the use of EPOS, considering LVM and its libraries as components (Schulter et al, 2007). 

Scylla and KESO are other virtual machines aiming efficiency and low overhead, but they have very 

different ways to solve these problems. In fact, Scylla is a system level virtual machine (Stanley-Marbell and 

Iftode, 2000), and KESO is a tool that compiles Java bytecode to C source code, the system's native language 

(Stilkerich et al, 2006). 

Some of these approaches are unsuitable for small embedded devices, and others make significant 

changes to the supported languages, requiring applications to be designed specifically for the host system, 

therefore impacting portability. 



3. EPOS SUPPORT FOR LVM 

This section describes in details our approach to port the LVM to EPOS. LVM is written in C and compiles 

as a C++ library with minor changes (Ierusalimschy et al, 2007). That is how we use it on EPOS. Therefore, 

its portability relies only on the underlying hardware and operating system. 

EPOS is a framework designed to guide and provide architecture transparency to the development of 

scenario independent component families that can be used in different environments through applying aspect 

programs (Schulter et al, 2007; Fröhlich and Schröder-Preikschat, 2000). It is designed for embedded 

hardware and it provides most of the support Lua needs to work. Nevertheless, Lua uses C standard libraries 

that are not present in EPOS. We could add these libraries to the environment and most of it would work 

properly, but we would be adding unnecessary code. We therefore chose to implement only the 

functionalities Lua needs. The next subsections address every functionality we had to handle in order to 

allow full support for Lua applications on EPOS. 

3.1 Character, Memory, and String Handling 

Character Classification functions are used in LVM inside lexical analyzer routines and also for pattern 

matching. Since these functions were not available in EPOS, they were implemented. This implementation 

was simple and took into consideration the ASCII character set.  

EPOS already had a header called string.h, which defined some Memory and String handling functions. 

Lua uses most of these functions and a few more. Since they are frequently used, they were implemented 

inside the file string.cc. The only function that we did not implement was strcoll, although it was used in the 

LVM. The calls to this function were replaced by a call to the strcmp function. We will discuss more about 

this subject in the next subsection. 

3.2 Localization, Time, and Date 

The main use for software localization tools in the LVM is to provide software localization for the Lua 

applications. However, the current locale can also be used to inform the lexical analyzer what is the current 

representation for the decimal point. The Lua Operating System Library provides the setlocale function for 

Lua applications. This function simply calls the C standard library. We could not find a utility for software 

localization in EPOS, so we removed this feature. This removes the setlocale function from the Lua library. 

Besides, we removed the support for locale in every function that originally used it, such as String and Time 

handling functions. 

The Lua Operating System Library provides the following manipulation and formatting functions to Lua 

applications: 'clock', 'date', 'difftime', and 'time'. Lua uses C library functions in order to achieve that. EPOS 

provides the following classes for these purposes: Real-Time Counter, Date, Clock, and Chronometer. We 

implemented these functions using the classes above. Our implementation differs from the original in that it 

does not take into account the current locale, as we already discussed. 

Our Chronometer class counts how much time passed since the last call to its 'start' function. In order to 

do so, it uses an architecture-dependent function called 'time_stamp'. We used the Chronometer class to 

implement the 'clock' function. Our Real-Time Counter class uses its machine-dependent functions to 

implement some of the other functions. 

3.3 General Purpose Standard Library 

The C standard library is used in LVM for various purposes. The realloc function is used for all the LVM 

memory allocations. It was implemented in the file malloc.cc using the EPOS malloc function. The exit 

function is used when an error occurs. We now use the EPOS exit function of the Thread class. The strtoul, 

abs and strtod functions were not provided by EPOS and therefore they were implemented straightforwardly. 

The getenv and system functions were not implemented. The getenv function is mostly used for loading and 

building modules in Lua. Currently, the embedded lua virtual machine only executes one Lua script at a time, 

which is placed inside EPOS application. Therefore, the Lua Package Library was disabled. Besides this 



specific use, the Lua Operating System Library also provides these functions to Lua applications. They were 

not implemented because they use environment variables and external commands, and our Lua profile does 

not support these functionalities, as we will discuss further. 

The Lua Mathematical Library provides the rand and srand functions for Lua applications. The first 

generates a random number and the second sets the seed. They were implemented in EPOS using the 

Pseudo_Random class with some minor changes.  

3.4 Input and Output 

Various file systems were developed for EPOS, but they are not compatible with the way general-purpose 

computers use file systems. The functions that receive or return files were not implemented. However, we 

created an FStream class, similar to the OStream class present on EPOS, and declared all those functions 

there. Hence these functions are not supported, but they could be eventually implemented and their support 

would be ready to work. The functions responsible for reading from standard input stream were not 

implemented, since EPOS has no input device by default. This also could be easily implemented the same 

way of the FStream class. The functions responsible for writing to standard output stream were implemented 

using the existing OStream class.  

3.5 Mathematical Operations 

Lua provides the Lua Mathematical Library for its applications. Nevertheless, the underlying hardware does 

not necessarily support floating-point number representation. We implemented a simple configuration which 

informs the virtual machine whether the hardware supports or not floating-point representation. If so, these 

functions would be available for Lua applications. If not so, the Lua Mathematical Library would be reduced 

to only fixed-point functions.  

4. LUA PROFILE 

The set of modifications described in the last section only addresses C library functionalities in terms of what 

LVM needs and what EPOS provides. The work we did in adapting LVM to EPOS, implementing new 

features and changing others, accomplishes our goal of providing embedded system support for LVM.  

Table 1. Lua Library functions. Crossed out words are not present on our Lua Profile, and thus are not available on EPOS 

Basic library Package 

Coroutine 

library 

String library Mathematical 

library 

I/O library OS and Table 

library 

Debug library 

assert , error 

collectgarbage 

dofile , loadfile 

getfenv 

getmetatable 

ipairs , pairs 

load , loadstring 

next 

pcall , xpcall 

print 

rawequal 

rawget, rawset 

select 

setfenv  

setmetatable 

tonumber 

tostring 

type 

unpack 

module 

require 

cpath 

loaded 

loaders 

loadlib 

path 

preload 

seeall 

 

create  

resume 

running 

status  

wrap  

yield 

byte 

char 

dump 

find 

format 

gmatch 

gsub 

len 

lower , upper 

match 

rep 

reverse 

sub 

 

 

abs 

acos , asin 

atan , atan2 

ceil , floor 

cos , sin 

cosh , sinh 

deg 

exp 

fmod 

frexp , ldexp 

log , log10 

max , min 

modf 

pow 

rad 

random 

randomseed 

sqrt 

tan , tanh 

io.close 

io.flush 

io.input 

io.lines 

io.open 

io.output 

io.popen 

io.read 

io.tmpfile 

io.type 

io.write 

file:close 

file:flush 

file:lines 

file:read 

file:seek 

file:setvbuf 

file:write 

clock 

date 

difftime 

execute 

exit 

getenv 

remove 

rename 

setlocale 

time 

tmpname 

 

concat 

insert 

maxn 

remove 

sort 

debug 

getfenv 

gethook 

getinfo 

getlocal 

getmetatable 

getregistry 

getupvalue 

fenv 

sethook 

setlocal 

setmetatable 

setupvalue 

traceback 



Through these modifications, we defined features that EPOS would not support and consequently LVM 

cannot use. That is the case of OS library functions such as ‘getenv’, ‘execute’ and ‘setlocale’. The ‘execute’ 

function, specifically, is useful for Lua applications that control larger systems, but this kind of control can be 

performed outside Lua, with the use of EPOS facilities. We are looking forward to support this ‘execute’ 

function inside Lua in future works. 

However, two problems arise from this scenario. The first is that Lua developers may not know whether 

EPOS supports an LVM functionality or not. The second is that Lua developers may never need some 

features in an embedded Lua application, but LVM would still support these features. 

Therefore, in order to properly create an efficient and maintainable Lua runtime environment for 

embedded systems, we need to make clear what LVM provides and what Lua applications need. Even if a 

feature is supported by EPOS and LVM, it is possible that it will never be used by a Lua application running 

on EPOS. We solve these two problems creating a Lua Profile for embedded systems, which defines a subset 

of functionalities that LVM provides for embedded Lua applications. 

Table 1 shows all Lua libraries, with all the functions they implement. The features removed in our Lua 

Profile are crossed out. As we can see, we did not remove many features from the LVM, and therefore our 

Lua Profile is vast and it is able to support most of the real Lua applications.  

5. EVALUATION 

We intented to evaluate the overhead LVM caused on EPOS environment in terms of size, and also analyse if 

the embedded LVM runs on EPOS similarly to a Linux distribution, so Lua developers could expect 

comparable performance between them. 

 

 

Fig. 1: Lua Test Application. 

We created a test application in Lua and in C++, EPOS native language. Fig. 1 and Fig. 2 show the source 

code of the two versions. This simple application calculates the 24th Fibonacci number. An enhanced Lua 

version of this test application is deployed with the source code of the official implementation of Lua. The 

Lua version uses a recursive function called fib and then calls the format function of the String library to 

create a result string. The C++ version uses our own implementation of functions itoa and sprint. We tested 

these applications on EPOS and on an Ubuntu 9.04 with 2.6.28-19 kernel. Both systems were executed on the 



same platform. Therefore, we have four different execution times. All these execution times were measured 

with an oscilloscope. 

As we can see in Fig. 3, the C++ application is faster than the Lua application wherever it is running. 

Nonetheless, Lua is still very attractive, since its high-level abstractions ease the development of 

applications. The C++ application was faster on the Linux distribution because of optimizations in the libc. 

The Lua application, however, was faster on EPOS. 

 

 

Fig. 2: C++ Test Application. 

 

 

Fig. 3: Execution time in milliseconds of the two applications running on the two different systems. 



 

Fig. 4: Execution time in milliseconds of each step of the LVM execution on EPOS and Linux. 

Fig. 4 goes beyond and shows how much time it takes to perform each step of the LVM execution. These 

discrepant times depend primarily on the application, and therefore we cannot say that Lua runs faster or 

slower on EPOS. In fact, we are showing that the overhead of the LVM execution on EPOS is not much 

different from the Linux version. For the record, the LVM execution time standard deviation was 0.8857 ms, 

and the application execution time specifically had 0.1985 ms of standard deviation.  

 

 

Fig. 5: EPOS size in bytes, without any application. 

 

Fig. 5 shows that EPOS has less than 32KB of size. The LVM, without its libraries, has size of 

approximately 90KB. Hence the EPOS size with basic Lua support is approximately 120KB. The libraries 

size is approximately 35KB. Theses sizes do not count the application size, which varies depending on the 

system.  



6. CONCLUSION 

Although some embedded systems often do not have 120KB available just to support the system, this size is 

comparable to those of our related works. In fact, some other high-level languages virtual machines have 

much bigger sizes (Ishikawa and Nakajima, 2005). Also, the LVM code in EPOS is really lighter than in 

Linux, but our tests show that we can improve performance and also reduce even more its size. That shall be 

the next step. 

Our final EPOS/LVM system is able to execute a high-level language application, with full support to all 

high-level abstractions Lua already provided for desktop applications. More than that, we achieved to support 

a high-level language without restricting its flexibility, without disabling its portability, and most of all, 

without making the system unsuitable for embedded systems. 

Finally, our approach showed us common aspects in adapting high-level languages for embedded 

systems, such as internal communications between virtual machine and operating system and libraries 

support by the virtual machine. We are looking forward to generalize these steps in order to ease the 

adaptations of virtual machine high-level languages for embedded systems. 
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