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Abstract—The Advanced Encryption Standard (AES) is the
main algorithm used to ensure security and privacy in several
different applications ranging from massive data servers to small
low-power embedded systems. Such embedded systems often rely
on dedicated hardware implementations of AES in order to meet
tight power budgets. In this scenario, C/C++ High-Level Synthesis
(HLS) solutions are gaining acceptance as traditional hardware
design methodologies can no longer match the strict time-to-
market requirements of current applications. In this paper, we
describe a C++ implementation of the AES algorithms and
explore different hardware micro-architectures by using HLS
solutions. We focus on describing the process of obtaining an
efficient synthesizable C++ description form plain software code.

I. INTRODUCTION

Advances in technology are increasingly changing our
day-to-day. In the upcoming world of Internet of Things,
technologies such as wireless sensor nodes, contactless smart
cards, and radio frequency identification (RFID) are of utter-
most importance and need strong cryptographic protocols to
ensure privacy[1]. In this scenario, the Advanced Encryption
Standard (AES) is a standardized algorithm approved by the
National Institute of Standards and Technology (NIST)[2]. It
has become the default choice in numerous applications, from
high-end computers to low power portable devices, including
standard wireless technologies such as IEEE 802.11i [3] and
IEEE 802.15.4[4]. Its widespread adoption on small embedded
devices has brought new design challenges, however. The
AES algorithm is computationally intensive and a software
implementation on general purpose processors may not meet
the requirements of such small and low power devices. Current
embedded systems may depend on dedicated hardware acceler-
ators to perform encryption and decryption of information.

Approaches for deploying AES hardware accelerators are
often based on register transfer level (RTL) implementations
synthesized to application-specific integrated circuits (ASICS)
or reconfigurable hardware devices such as field programmable
gate arrays(FPGA). However, the strict time-to-market require-
ments of most applications demand a better productivity than
what is possible with current RTL design methodologies, thus
leading to a growing demand for high-level synthesis (HLS)
solutions. HLS is a (semi-)automatic process that creates cycle-
accurate RTL specifications from untimed or partially timed
behavioural specifications. The main advantage of HLS is
the possibility of automatically generating different hardware
micro-architectures from a single high-level implementations,
thus enabling quick design space explorations and dramatically
reducing time-to-market.

Current HLS tools support hardware synthesis from high-
level C/C++ specifications. This motivates the reuse of efficient,
well validated and time-tested software algorithms through
automatic hardware synthesis. However, plain C/C++ software
code usually cannot be used “as it is”. Some constraints must
be met to achieve a good hardware implementation using HLS.
These constraints include identifying concurrency opportunities,
creating an architecture top level describing the system interface,
and choosing the mapping between data arrays and hardware
resources, such as registers and RAM blocks.

In this paper we describe the design and implementation of
a AES block cipher for both hardware and software. During
the design process, we identify which constraints must be met
in order to achieve a C++ code that can be efficiently used for
architectural exploration using hardware HLS tools. We first
provide an efficient baseline software implementation and then
explore different hardware implementations considering two
main scenarios: one that relies on registers for storing data, thus
allowing a high throughput implementation; and one that relies
on RAM/ROM blocks, thus reducing the overall hardware by
sacrificing performance. For each scenario, we explain which
changes made to the original C++ code to allow the desired
exploration.

The remaining of this paper is organized as follows:
Section II provides a quick background on HLS and the
AES algorithm; Section III reviews other works that describes
AES implementations; Sections IV and V describe our design,
hardware microarchitecture exploration, and our results; Section
VI closes the paper with our conclusions.

II. BACKGROUND

This section provides a quick overview on the AES standard
and HLS concepts.

A. Advanced Encryption Standard

AES is a round-based symmetric block cipher which uses
the same key for both encryption and decryption. Figure 1
shows the operation flow for encryption and decryption. AES
is defined for 128-bit data blocks size and uses key lengths
of 128, 196, and 256 bits. According to the key length, AES
variants are called AES-128, AES-196, and AES-256.

The cipher keeps the to-be-en/decrypted data in an internal
4x4 matrix of bytes, called state, in which the operations are
performed. Similar to other symmetric ciphers, AES operations
are organized into rounds that are applied iteratively according
to the key length (10, 12, and 14 rounds for AES-128, AES-
196, and AES-256, respectively). Each round consists of four
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Figure 1. AES Encryption/Decryption Flow

transformations:
addRoundKey consists in mixing the state array with a round
key derived from the cipher key by XORing the bytes in
respective positions of the array.
subBytes is an invertible non-linear transformation. It uses 16
identical 256-byte substitution tables (S-box) for mapping each
byte of state into another byte. The S-box values are generated
by computing the multiplicative inverses over in Galois-Field
GF(28) and applying affine transformations.
shiftRows operation consists basically of a left shift of the
second, third and fourth rows of the state matrix by one, two
and three bytes respectively
mixCollumns performs a polynomial multiplication in GF(28)
on each column. More information can be obtained from [2].

B. High-level Synthesis

High-level synthesis — also known as electronic system-
level (ESL) synthesis, is an semi-automatic process that takes
a untimed algorithmic description and generates RTL hardware
implementations. Figure 2 gives an overview of the HLS flow.

The state-of-art of HLS tools (e.g. CatapultC [5], Vivado [6],
and others[7], [8]) already supports hardware synthesis from
algorithms coded in languages such as C and C++. Due to
some characteristics of high-level synthesis, extra care must be
taken in order to produce C++ code that can be synthesized to
hardware and run efficiently in software. HLS tools limit the
use of C++ features that rely on dynamic structures in software
(e.g. heaps, stacks, virtual method tables), such as recursion
and dynamic polymorphism. Furthermore, the same high-level
algorithm can span several different hardware implementations.
For instance, C++ loops can have each iteration executed in
a clock cycle, or can be fully unrolled in order to increase
throughput at the cost of additional silicon area. This kind
of synthesis decision is usually taken based on user defined
synthesis directives which are provided separately from the
algorithm descriptions.

Based on these inputs, algorithm operations are scheduled

Figure 2. High-level synthesis steps

in different clock cycles and functional units. The output of
the tool is usually a RTL descriptions in hardware description
languages such as VHDL or Verilog, which is used as input
for the lower levels of the implementation flow.

III. RELATED WORKS

Since the standardization of AES, a lot of people developed
hardware architectures to implement the algorithm. However,
there are few works that uses HLS to implement the cipher.

In [9], the authors focus on developing a highly regular and
scalable hardware architecture. They achieve their objective by
using similarities of encryption and decryption. In their work
they also achieve a very good performance and relatively small
area by balancing the combinational paths of the design.

The AES encryption core hardware presented in [10] is
suited for small embedded applications or devices that require
low power consumption. The authors propose a core constituted
of a novel 8-bit architecture that supports AES-128. They
achieve a throughput of 121 Mbps at a maximum frequency
of 153 MHz. The authors achieved a significantly higher
throughput(comparing to previous 8-bit implementations) with
corresponding area and lower energy consumption per processed
block.

The authors of [11], provide a comprehensive hardware
architecture comparison between the AES cipher and new
lightweight cryptographic algorithms standardized by the
International Organization for Standardization (ISO), such
as Clefia [12] and Present [13]. The comparison is performed
on 128-bit version of all the ciphers, with the same design
goals, and targeting the same FPGA platform and synthesis
tools. Their area/speed results for the serial versions of AES
and CLEFIA were similar, however, the extra storage register
required by CLEFIA for the mixed key means that lower area
AES designs with a similar throughput are possible. They also
note that the PRESENT serial and iterative architectures differ
little in area while increasing a lot in throughput.

In [14], the authors expose how they effectively leveraged
on a C-based AES implementation to generate a hardware
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core using HLS. They provide an explanation of the C2R
[15] methodology and compiler for co-processor synthesis.
Exploration of different architectures to meet area and speed
constraints are also shown in their work. Their baseline imple-
mentation using a 128-bit datapath resulted in an encryption
core that required 12 clock cycles to encrypt one block.

IV. AES BASELINE SOFTWARE IMPLEMENTATION

Our baseline software implementation is directly based on
the operations flow described in Section II and supports the
128-bit version of the AES algorithm. It is implemented using
the C++ languages using object-oriented programming (OOP)
techniques. Figure 3 shows shows an overview of our imple-
mentation.

Figure 3. UML class diagram showing the structure of our software
implementation

The aesKey class encapsulates all key operations that are
shared by both encryption and decryption flows. This class
consists of the key expansion operations the addRoundKey
method. The aesKey class also contains the rCon and sBox
tables. The rCon table is used to generate all the round keys,
and the sBox is used both to generate the round keys and
to encrypt. The aesKey class is extended by the aesCipher
and aesDecipher classes using OOP inheritance. The classes
implements the encryption and decryption flow, respectively.
This is necessary since their internal implementation differs
dramatically between encryption and decryption.

A. Encryption flow

In order to show how our baseline software works, we
describe next how we have implemented the sequence of
operation in the encryption flow. The first method to be called is
the changeKey method (defined in the aesKey class). It receives
the new key to use in encryption and stores it’s value in the
cipher_key array. After the value is stored, the expandKey
method is called. The key expansion operates with words of 4
bytes and starts by copying the key into the 16 first positions
of the key_schedule array, then expands the key into another
10 round keys as shown in Figure 4.

With the key expanded and stored, the encrypt method can
be called passing the to-be-encrypted text as argument. The
round operations are shown in Figure 5. Usually, the round
operations are performed in the state matrix. In our case, we
implemented the state matrix in form of an array, as shows
Figure 6. The main reason to implement the matrix as an array

Figure 4. Mapping of the key words to round keys

Figure 5. AES round operations.

is avoid nested loops, which facilitates the profiling of loop
iterations. The method encrypt triggers the encryption flow and
starts by copying the plain_text to the state array and then
calling the cipher method. The cipher method executes the
methods in the same sequence shown in Figure 1:
addRoundKey performs a 16-iteration loop which is executes
a byte-by-byte XOR with the state array and the respective
round key.
subBytes, like addRoundKey, performs a 16-iteration loop in
which each iteration replaces a byte by it’s correspondent value
from the sBox table.
shiftRows cyclically shifts the bytes in each row by a certain
offset. The first row is left unchanged. Each byte of the second
row is shifted one to the left. Similarly, the third and fourth
rows are shifted by offsets of two and three respectively.
Finally, the mixColumns method does operations on the GF for
each column of the state matrix. In our case the state columns
is each sequence of 4 bytes of the state array.

B. Results

We compared our baseline implementation of the AES with
a widely used C library available from Texas Instruments [16].
We started by validating the implementation against a series of
test-vectors and comparing the results with Texas’. The results
were obtained by running both implementations in a Intel Core
2 Quad CPU Q9550 @ 2.83GHz x 4 using 32-bit Ubuntu
12.04 LTS. Texas Implementation encrypted one block in 8μs
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Figure 6. Example of the state matrix implemented as array

Table I. TABLE OF MAIN LOOPS, UNROLLING CAPABILITY AND

ITERATION NUMBER

Loop: Unroll Iterations

addRoundKey yes 16
subBytes yes 16
mixColumns yes 4
round no 9
expandKey no 40

while our encrypts one block in 9μs. This shows that our C++
OOP-based implementation yields performance comparable to
a industry-optimized C-based implementation.

V. MODIFICATIONS FOR HARDWARE SYNTHESIS

In this section we describe the process of obtaining an
efficient synthesizable C++ description from plain software
code. The first step is identifying target loops for parallelization.
Table I shows the main loops of the cipher, if they can be
unrolled and how many iterations. As presented in Section IV
the addRoundKey, subBytes and mixCollumns are implemented
in loops. Since the next iteration of these loops does not depend
on the previous, we can unroll the loop and perform all the
operations in parallel. The round loop and the expandKey can
not be unrolled due the fact that each new iteration depends
on the values obtained from the previous one.

Figure 7 summarizes all performed modifications and
generated hardware architectures. Each step is explained in
more details below.

A. Baseline implementation synthesis

We made some changes to adapt the software C++ code
for a HLS tools1. This changes mostly consisted in creating
an architecture top level. For designs that have multiple
functions within the C++ input file, it is necessary to specify
one function to be the top-level function. The architecture
top-level is necessary to describe the system interface and
behaviour. We defined that the input is a sequence of 17 bytes
of which the first bytes defines the operation(encrypt, decrypt
or changeKey) and the other 16 bytes are either the to-be-
en/decrypted text or the new key. The output is a sequence of
16 bytes with the encrypted/decrypted text. Before synthesizing
the software implementation obtained from Section IV, we

1due to legal constraints regarding licensing, we cannot mention the HLS
used in our work

defined some constraints aiming at obtaining results considering
a real scenario. We synthesized only the encryption and key
expansion cores. The design target frequency was established
as 13.56 MHz (ISO standard for contact-less smart cards) on
a Xilinx Virtex-6 6VCX130TFF484 FPGA platform.

Considering an application that encrypts more than one
block with the same key, we defined that the round keys were
pre-calculated and stored, this way this approach can be more
energy-efficient. The sBox and rCon are also pre-calculated
values. With these constraints defined above, we synthesized
the code from Section IV with just the addition of the top-
level function. The synthesis tool mapped the constant arrays
rCon and sBox to ROM and the key schedule array to RAM.
Without changing any of the tool constraints, we synthesized
the hardware to verify what would be generated. The result
of the synthesis was not satisfactory. It required an enormous
amount of cycles to encrypt one block. We then considered
two optimization scenarios: one for throughput and another
one for area. Results are shown in Table II. This table shows
the number of cycles required for each method and the total
number of cycles need for encryption of a whole block.

B. High-throughput implementation

In our first scenario, we considered an application in which
we don’t need to worry about the area occupied but high
throughput is required. In this case would be very interesting
to have all the arrays mapped into registers because it would
allow all indexes to be accessed within a single clock cycle,
therefore increasing parallelism opportunities. Since the target
frequency of the design is also low (13.56 MHz), the a full
encryption round operations can also fit in just one cycle. Using
this configurations, we were allowed to fully unroll the loops
(loops that could be unrolled shown in Table I) and parallelize
most of the operations. This resulted in an encryption core
where each 16 byte block takes 12 cycles to encrypt.

The single modification we made to the software implemen-
tation at this point was to rewrite the shiftRows method. The
method was re-written to do the respective changes of byte’s
order in the array without mapping it to a matrix. This way
the operation used less resources than it would if mapped to
the matrix. By just changing the HLS tool constraints we were
able to generate this. The tool was set to store the constant
tables rCon and sBox to registers. The key_schedule was also
set to be stored in registers. These changes made possible
the reduction of the number of cycles, because addRoundKey,
subBytes, ShiftRows and mixColumns operations could be
entirely unrolled.

C. Low area implementation

Since not all applications have area to spare, we also
considered an application that is limited in area, so we would
need a low area implementation. In this scenario would be
very interesting to have the constant arrays in ROM and the
key_schedule array in RAM. But this is what we had in the first
time we tried to synthesize. To optimize the hardware synthesis
we would need to make changes to the software in a way that
the tool would generate a different implementation. Using one
RAM to store the array we can only access one address per
cycle making it impossible to obtain any improvement. But we
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Figure 7. Overview of the performed modifications and generated hardware micro-architectures

Table II. RESULTS OF HARDWARE SYNTHESIS. THE NUMBER OF CYCLES FOR THE ENCRYPTION OF ONE BLOCK INCLUDES THE INTERFACE DELAY

. The Area Rating is a generic are metric reported by the synthesis tool.

Implementation Number of Cycles Area Rating LUTs Flip-Flops 36 Kbits BRAM

Baseline Implementation:

mixColumns: 4
addRoundKey: 32

subBytes: 32 4447.78 2674 1723 1
shiftRows: 4

Cycles per Round : 70
Encryption of one block: 748

Tables and key_schedule in registers:

mixColumns: 1
addRoundKey: 1

subBytes: 1 16936.01 15464 4810 0
shiftRows: 1

Cycles per Round : 1
Encryption of one block: 12

key_schedule w/ DIVIDE = 2

mixColumns: 4
addRoundKey: 16

subBytes: 32 4528.42 2740 1718 1
shiftRows: 1

Cycles per Round : 51
Encryption of one block: 542

key_schedule w/ DIVIDE = 4

mixColumns: 4
addRoundKey: 8

subBytes: 32 4596.57 2634 1804 1
shiftRows: 1

Cycles per Round : 43
Encryption of one block: 454

[14] Encryption of one block: 12 - 64282 4890 0

can divide the array into different RAMs, thus we can access
a different number of addresses per cycle, that number being
the number of RAMs we divide the array on.

We then needed a new software implementation where the
tool would map the key_schedule array into a different number
of RAMs. To do this we re-implemented the keyExpansion and
the addRoundKey methods using a parameter called DIVIDE.
DIVIDE can assume three different values:

• if DIVIDE = 1 we have the original code where the
entire array is mapped into the same RAM block, with
dimensions [1][176], meaning we can only access one
word per cycle.

• if DIVIDE = 2 we store the array into 2 different
RAMs, resulting in 2 arrays of length [88]. In this
case, each array is read eight times, but we can read

2 arrays per cycle.

• if DIVIDE = 4 we store the array into 4 different
RAMs, resulting on 4 arrays of length [44]. In this
case, it reads four arrays per cycle four times to obtain
a round key.

By using the DIVIDE parameter we were able to optimize
the number of cycles used in most of the operations in which
the key_schedule is used. Using RAM, 32 cycles were required
when we use DIVIDE = 1 to perform the addRoundKey
operation, where one cycle was used to read the memory and
another to perform the XOR for each of the 16 bytes. When
we use DIVIDE = 2 the number of cycles required to perform
an entire addRoundKey decreases to 16. It also takes one cycle
to read the memory and another to perform the XOR, however,
it performs two operations per cycle. In one cycle it reads 2
addresses of memory and in the other it performs two XOR
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operations.

Using DIVIDE = 4 we were able to reduce the number of
cycles required to perform an entire addRoundKey to 8 cycles.
In this case four memory addresses are read in one cycle and
the four XORs occur in the second cycle. This way we were
able to reduce a considerable amount of clock cycles to perform
the entire encryption operation with just a little gain in the
area rating. We could also improve the subBytes method, but
instead of dividing the subBytes table we would need to store
the same table in different memory addresses so we could read
more than one per cycle.

Table II also compares our result with a previous work [14].
Our Baseline implementation using 128-bit data path (fully
unroled with key_schedule and constant tables stored in
registers) matched the number of clock cycles required to
encrypt a block obtained in [14]2, but with a significantly low
area. This shows that we were able to achieve a very efficient
implementation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have explored different hardware imple-
mentations of the AES using HLS. We have developed a high
performance software implementation that required only small
changes to be efficiently synthesized to hardware. By exploring
different HLS directives and memory partitioning optimizations,
we were able to reduce the area occupied by the design while
also decreasing the number of cycles necessary to encrypt a
block.

Despite enabling the fast design space exploration of
hardware micro-architectures, the HLS process required modifi-
cations on the source code to generate efficient hardware. This
yields at least two different base AES implementations: one
aiming at software, and one aiming at hardware. Considering
a scenario in which the AES could be implemented as both
hardware or software, maintaining two different implementa-
tions for the same component can be error prone and lead
to functional mismatches. Therefore, as future work, our goal
is to solve this issue by redesigning the AES cipher using
aspect-oriented programming techniques and the unified design
approach [17].Our focus in this sense is on isolating aspects that
are specific to hardware and software into aspect programs that
can be automatically applied to the base C++ AES code. This
would enable the generations of hardware- and software-specific
C++ without the need of error-prone manual modifications.
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