
Speculative Precision Time Protocol:
submicrosecond clock synchronization for the IoT

Davi Resner, Antônio Augusto Fröhlich
Software/Hardware Integration Lab

Federal University of Santa Catarina
PO Box 476, 88040-900 – Florianópolis, SC, Brazil

{davir,guto}@lisha.ufsc.br

Lucas Francisco Wanner
Institute of Computing
University of Campinas

Av. Albert Einstein, 1251, 13083-852, Brazil
lucas@ic.unicamp.br

Abstract—Time synchronization is a keystone of Wireless
Sensor Networks (WSN). It is fundamental to coordinate the
action of nodes in a network and it is also a critical element
of several security mechanisms. In this paper, we discuss and
evaluate the time synchronization strategy behind the Trustful
Space-Time Protocol (TSTP), which explores the protocol’s cross-
layer architecture to speculatively peek through the timestamps
and geographic info present in message headers, implementing
high-accuracy clock synchronization with minimal insertion of
explicit messages. We evaluate the protocol analytically and
experimentally. The analytic evaluation is based on the model
defined by Schmid [15] for the Virtual High-resolution Time
(VHT), while the experimental evaluation was performed on the
IEEE 802.15.4-compliant EPOSMote platform running EPOS
and TSTP. Our results demonstrate that nodes in the network
can be consistently synchronized with sub-microsecond precision
while exchanging far less messages than they would with an
ordinary, non-speculative implementation, resulting in energy
savings. Indeed, precision and energy savings are higher for
networks with higher traffic, since more messages are available
for peeking. In an experiment scenario in which messages
were exchanged between devices every 15 seconds, nodes in
the network achieved a synchronization error of approximately
15 microseconds in the worst case, while in a scenario in
which messages were exchanged every 3 seconds, synchronization
error was less than 0.5 microseconds in the worst case, and
approximately 0.25 microseconds on average.

Keywords-Clock Synchronization; Time Synchronization;
Wireless Sensor Networks; Cross-layer Communication Proto-
cols;

I. INTRODUCTION

Wireless Sensor Networks and virtually any other sort of
embedded distributed system, such as vehicles, smart build-
ings, smart cities, and the smart grid, depend on a consistent
perception of time in order to operate properly. These systems
rely on it to schedule tasks, to send and listen to messages,
and to trigger virtually any sensing and actuation operations.
On the eve of the Internet of Things, they will also depend
on very precise time synchronization to implement several
security algorithms [12].

In this paper, we discuss and evaluate the time syn-
chronization strategy behind the Trustful Space-Time Proto-
col (TSTP) [11], an application-oriented, cross-layer commu-
nication protocol initially developed for the Embedded Parallel

Operating System (EPOS). TSTP was designed to deliver
authenticated, encrypted, timed, georeferenced, SI-compliant
data communication support to IoT devices interacting with
an IoT gateway, and it was designed to do so in a resource-
efficient way. Actually, it reaches beyond a communication
protocol as it defines a user interface inspired by the IEEE
1451 Smart Transducer concept of "transducer electronic data
sheets". Applications simply declare interest in a given physi-
cal quantity in a portion of space-time that is to be measured
with a minimum precision and at a given frequency. Nodes
matching the criteria periodically send the corresponding data
that is selectively forwarded to the gateway. In this scenario, it
is fundamental that nodes are aware of their location in space
and time in relation to the network. From its design, TSTP
implicitly causes timestamps to be constantly transmitted
throughout the network, enabling clock synchronization with
no additional messages in most cases.

One of TSTP’s goals is to eliminate replication of infor-
mation along the network stack by providing to applications
features often necessary in the WSN/IoT context. TSTP itself
leverages precise clock synchronization to save energy at
the Medium Access Control level [14] and to provide secu-
rity [12]. Given that precise synchronization is present, cheap,
and beneficial, implementing another higher-layer protocol
for the same endeavour would replicate timing information
unnecessarily: applications can instead simply ask TSTP what
time is it, even if that application does not use timestamping
with the fine granularity provided.

We discuss TSTP’s speculative clock synchronization strat-
egy in depth along with the initialization phase and a predic-
tion mechanism to deal with clock skew during the interval
between two messages. A back-off mechanism for long silence
intervals is also described. We evaluate the protocol’s precision
and bandwidth utilization both analytically and experimentally.
The analytic evaluation is based on the model defined by
Schmid [15] for the Virtual High-resolution Time (VHT),
while the experimental evaluation was performed with IEEE
802.15.4 compliant motes running EPOS and TSTP. The key
contributions of this work are:

• An analysis of the sources of clock and timestamping
synchronization imprecision in networks in general and
in IEEE 802.15.4 in particular.978-1-5090-1314-2/16/$31.00 c� 2016 IEEE

• The speculative time synchronization strategy used in
TSTP, which is able to keep nodes in a network con-
sistently synchronized at sub-microsecond ranges while
exchanging less messages than they would with an ordi-
nary, non-speculative PTP implementation.

The remainder of this paper is organized as follows: sec-
tion II presents related work, focusing on strategies for low-
cost, high-precision synchronization. Section III presents a
discussion on the sources of imprecision in time keeping,
showing our strategies to tackle each of the identified issues.
Section IV shows the time synchronization model used in our
work. Section V presents the design and implementation of
the Speculative Precision Time Protocol, which is built upon
the Trustful Space-Time Protocol (TSTP) for IoT devices. In
section VI we evaluate time synchronization quality with IoT
devices using TSTP. Finally VII presents our conclusions.

II. RELATED WORK

Network time synchronization protocols typically work
through the exchange of timestamped messages between pairs
of nodes [1]. Each message typically contains a local times-
tamp of the sender. A series of messages are exchanged to
estimate the time offset and drift between a pair of nodes [5].
The most widely used protocol of this kind is the Network
Time Protocol (NTP) [10]. NTP targets Internet hosts and,
due to its multihop nature, suffers from constantly varying
communication delays between hosts. Typical synchronization
accuracy for NTP is on the order of tens of milliseconds,
making it unsuitable for time-critical sensing and actuation
applications.

In the wireless embedded sensing context, the Flooding
Time Synchronization Protocol (FTSP) [8] is the most widely
cited time synchronization protocol. FTSP aims to synchronize
an entire multihop network of wireless nodes to a single root
node. The root node periodically broadcasts time synchroniza-
tion messages, each of which contains multiple timestamps.
Because FTSP targeted platforms using radios with software-
defined medium access control (MAC), it relies on MAC-level
timestamping combined with a characterization of interrupt
handling timing. Each transmitted timestamp is acquired as
close to the physical send event as possible. This combination
of precise interrupt handling timing and multiple timestamps
per message allowed FTSP to achieve a 1-hop synchronization
accuracy of ∼1.5 µs. In our work we likewise make use of
software-defined MAC to perform timestamping very close to
the send event.

Virtual High-resolution Time (VHT) [15] improved on the
accuracy and energy performance of FTSP by relying on a
combination of two clocks: a low-frequency, low-power clock
used to keep the system synchronized and a high-frequency,
high-power clock used for high-resolution timestamping. The
low-frequency clock (e.g. a 32 kHz crystal) is kept syn-
chronized through a combination of infrequent timestamp
exchanges between nodes and local temperature compensation.
The high-frequency clock is activated only when fine-grained
timestamps are needed and can therefore be duty cycled at very

low rates, which leads to significant energy savings (more than
10x improvement with a 0.1% duty cycle). Results with VHT
using Epic sensor node cores [2] achieved a mean accuracy
of 0.125 µs (identical to the precision provided by the high-
frequency 8MHz crystal clock used in the experiments) with
a standard deviation of 0.625 µs.

Reference Broadcast Synchronization (RBS) [4] is a
receiver-receiver synchronization protocol. Instead of synchro-
nizing a pair of sender-receiver nodes, it synchronizes a set of
receiver nodes with each other. In RBS, a reference beacon
is broadcast and received by multiple nodes in the network.
The reference beacon contains no timing information by itself.
Instead, each of the receiving nodes captures a local timestamp
when a beacon is received. Since the propagation time in
wireless networks is negligible under practical conditions
(< 0.1 µs for distances of 30m), the beacon arrives at all nodes
effectively at the same time, and therefore by exchanging
local timestamps receivers can calculate their relative clock
offsets. Experimental results with RBS using commodity WiFi
hardware showed that it can synchronize two nodes to the
order of a few microseconds [4].

The recent introduction of the IEEE 1588 Precision Time
Protocol (PTP) standard [6] emphasized the need for high pre-
cision, submicrosecond synchronization for distributed sens-
ing and control systems [3]. Compared to NTP, which uses
application-level timestamping of network packets to account
for drift and offset, PTP can make use of advanced timestamp-
ing capabilities in the network interface hardware in order to
reduce the temporal interference introduced by various layers
of software. PTP defines a hierarchy of clocks, in which a
grandmaster periodically broadcasts Sync messages, and other
nodes send Delay Request messages which are replied by
higher clocks in the hierarchy, so that each node can measure
with high accuracy both network round-trip time and their own
clock offset.

The main focus of the present work is to reduce as much
as possible the explicit exchange of time synchronization
messages in a context where timestamps are already present
in passing messages, while still keeping synchronization accu-
racy close to the maximum possible offered by the hardware
platform.

III. SYNCHRONIZATION AND SOURCES OF IMPRECISION

Time in computing systems is typically kept by counting
cycles of a piezoelectric crystal oscillator. The frequency of
oscillation is determined by the cut, vibration mode (longitudi-
nal, transverse), and the size of the crystal wafer [16]. Impreci-
sions and defects in the manufacturing process therefore lead
to a deviation in oscillation frequency across different parts
with the same nominal frequency. Furthermore, environmental
factors such as temperature, aging, drive level, power supply
noise, and vibration-induced noise also affect crystal stability
and accuracy.

The accuracy of a crystal is its offset from the target nominal
frequency, while its stability is the spread of its frequency
over time [16]. Figure 1 shows examples for accuracy and

stability scenarios for crystal oscillators. Oscillators may be
stable and accurate, stable but inaccurate, instable but accurate
on the average, and instable and inaccurate. Inaccuracy in
frequency leads to the fact that two independent clocks,
once synchronized, will drift apart without limit. Figure 2
shows the clock between nodes of out target IoT platform,
EPOSMote III, drifting apart over time.

Time

Fr
eq

ue
nc

y

Actual frequency
Nominal Frequency

(a) Accurate and Stable
Time

Fr
eq

ue
nc

y

Actual frequency
Nominal Frequency

(b) Inaccurate and Stable

Time

Fr
eq

ue
nc

y

Actual frequency
Nominal Frequency

(c) Accurate and Unstable
Time

Fr
eq

ue
nc

y

Actual frequency
Nominal Frequency

(d) Inaccurate and Unstable

Figure 1: Accuracy and Stability of Crystal Oscillators

0 100 200 300 400 500 600

−4
0

−2
0

0
20

40

Time (s)

O
ffs

et
 v

ar
ia

tio
n

(u
s)

Figure 2: Clock drift of four different EPOSMote III devices
in relation to a fifth. One of the motes (in blue) diverged
particularly quick in this scenario.

Improving stability and precision of clocks has been the
target of research and development, including Temperature-
Compensated Crystal Oscillators (TCXO), Microcomputer-
compensated crystal oscillator (MCXO), and Oven-controlled
crystal oscillator (OCXO), all of which attempt to compensate
for systematic and environmental variations in oscillators [7].
These mechanisms come at a cost in terms of system volume,
cost, and energy consumption.

In the domain of energy-constrained IoT devices, no com-
pensation mechanism can achieve perfect target frequencies
under practical conditions. The IEEE 802.15.4 standard, for
example, has a precision requirement for devices of 40 ppm,
including temperature and aging variations [9]. Because any
two clock sources with differing frequencies will always drift
apart, a common measure of time between two independent
systems requires a synchronization mechanism. The synchro-
nization process itself is subject to temporal inaccuracies and
variations. In the case of wireless IoT devices, these variations
arise from the message exchange process itself, which includes
the following steps:

1) Signal radio to enter transmission mode
2) Read the local timestamp
3) Copy message to the radio with the timestamp
4) Send Start of Frame Delimiter (SFD)
5) SFD is received
6) Receiver’s current timestamp is recorded

The fundamental source of inaccuracy at the time of
synchronization is the variation in the time interval taken
between acquiring the sender’s timestamp (step 2) and the
receiver timestamp (step 6). If this time was always constant
and quantifiable, synchronization at the time of reading the
timestamp would be perfect. This is however not the case in
any synchronization strategy. In NTP, for example, this delay
is widely variable due to dynamic traffic and congestion in
the multiple hops between sender and receiver. In single hop
scenarios with a shared medium (such as wireless communica-
tions), the delay is variable due to medium access and prop-
agation delays. Finally, even hosts using switched networks
with stricter timing guarantees will still suffer variations due
to variations in software interrupt handling times.

In IEEE 802.15.4, the quality of the timestamps (steps
2 and 6) is dictated by the standard, which imposes a
minimum frequency accuracy requirement. The transmission
and reception of messages is bounded by the Start of
Frame Delimiter (SFD). Without direct timestamp insertion
from either the MAC layer or the hardware itself, message
timestamping must be done by software in the higher layers,
and is thus subject to variable medium access delays due
to network contention. Assuming that the transmission
and reception timestamps can be obtained immediately
before/after the SFD is actually sent/received, the elapsed
time between transmission and reception timestamps would
be determined by delays provenient from signal propagation
and processing at the physical layer. The later delay is
negligible for the small distances between nodes imposed by

low transmission powers used in IEEE 802.15.4 networks.
The former is affected by the well-defined delays present in
the standard:

sr = 62.5 symbol
ms IEEE 802.15.4 Symbol Rate

Tu = 12
sr

= 0.192ms IEEE 802.15.4 Turnaround Time
SPHR = 10symbol PHY header + preamble size
TPHR = 0.160ms PHY header + preamble time

and a more random component between SFD transmission
and reception representing radio hardware synchronization.
This component dictates a physical limit of synchronization
made available by the hardware (we measure this quantity in
our platform in Section VI).

Acquiring timestamps close to SFD transmission and re-
ception times requires precise control and predictability in the
software stack. In general-purpose systems such as Linux, the
wide variability in I/O and interrupt handling timing makes it
virtually impossible to accurately quantify the time between
these two operations, and hence protocol implementations
such as PTP require hardware timestamping for high-precision
synchronization. With hardware timestamping, the network
interface itself acquires a timestamp as soon as SFD or equiv-
alent frame delimiters are sent or received. In this work, by
disabling interrupts during the short period between message
timestamping and transmission and using only deterministic
software instructions during this time, we are able to accurately
compensate for the delay between steps 2 and 4. The radio
hardware itself records timestamps of received messages,
and we consider that the delay between SFD reception and
timestamp recording (steps 5 and 6) is zero.

In addition to the variation in the time interval between
timestamping operations in senders and receivers, synchroniza-
tion accuracy over time is also influenced by the rate at which
synchronization messages are exchanged. In our strategy, tim-
ing information is included with every message. Timestamping
is a fundamental requirement for IoT applications, not only for
synchronization, but also for sensing and control, localization,
and security. Our synchronization strategy “piggybacks” on the
timestamping required for these other functionalities. Because
there are normally no explicit synchronization messages (as
every message is a potential synchronization message), the
frequency of synchronization will depend on network traffic,
with the effect that networks with higher traffic will perform
synchronization more frequently and therefore will have higher
quality of time. We define an explicit synchronization mech-
anism for nodes to use in cases where synchronization is
particularly important and the network goes silent for too long.

IV. TIME MODEL

To achieve �-precision time synchronization, a node
needs [15]:

1) a high-resolution clock source with frequency f0, and
2) message time-stamping with accuracy �± 1/f0

Let dTX be the total time delay between immediately before
step 2 and immediately after step 6 (Section III), and cN (tm)

represent the value of the timestamp counter of node N at
physical time tm. If dTX is known and has a small enough
jitter, when node B receives a timestamp cA(t1) from node
A, it can trivially determine its clock offset φ

φ = cA(t1)− (cB(t
�
1) + dTX) (1)

where cB(t
�
1) is the time recorded by node B upon reception

of the message. The accuracy of this estimation is determined
by the jitter in dTX .

Once the offset is corrected, node B is ready to estimate its
clock drift in relation to A. After it receives a second message
containing cA(t2), the clock drift is given as:

f̂e =
(cA(t2)− cB(t

�
2))− (cA(t1)− cB(t

�
1))

cA(t2)− cA(t1)
(2)

The accuracy of this estimation is [15]:

δQ =
1

(t2 − t1) · fA
(3)

where fA is the frequency of clock A.
In the case of duty-cycled WSNs where nodes listen to the

channel at most once every P units of time, there is a lower
bound δQ ≥ (P ·fA)−1

V. TSTP’S SPECULATIVE PRECISION TIME PROTOCOL

TSTP messages are preceded by a MAC preamble and a
Header containing information such as sender time and loca-
tion (Figure 3). Besides time synchronization, TSTP provides
geographic localization to every node [11], and nodes also
know the location of the gateway. Gateways declare interest
in physical quantities by sending Interest messages, which are
geographically routed to a portion of space, and are subscribed
to by sensors in the area that can deliver the requested
measurements. These sensors periodically respond with Data
messages, which are routed to the gateway’s location.

TSTP’s Medium Access Control mecha-
nism (TSTP MAC) [13] is designed to run directly on
top of an IEEE 802.15.4 2450MHz DSSS PHY layer. It
is a cross-layer MAC protocol which handles collision
avoidance, implicit acknowledgement, duty cycling and
greedy geographic routing. Nodes only turn their radio
receivers on every Checking Interval CI, and transmitters
send a long preamble before the actual message to make
sure that every node will wake up in time to detect the
transmission. Preambles consist of Microframes (MF) which
are carefully timed [13] and contain useful information, as
depicted in Figure 4: a direction flag (All-Listen) which
indicates whether the message is destined to the gateway or
another node, countdown to data transmission (Count), sender
distance to the destination (Last Hop distance), message
sequence number (ID) and a checksum (FCS).

All neighboring nodes within communication range of
the sender sense the channel every CI interval, obtain a
Microframe and extract the information; then, only eligible
receivers (nodes closer to the destination) go back to sleep
and wake up to receive the data at the time indicated by

Header Format
Bits: 3 1 2 2 8 3*sb 64 3*sb + tb 0 or 32
Message Time Spatial Temporal Location Last Hop Last Hop Origin Location
Type Request Scale Scale Confidence x,y,z Time-stamp x,y,z,t Deviation

Figure 3: TSTP message header format. sb and tb are variables defined by the Spatial Scale and Temporal Scale codes [11].

Microframe
Bits: 1 8 32 15 16
All Last Hop
Listen Count distance ID FCS

Figure 4: TSTP MAC Microframe format.

the countdown. Nodes that receive the data without error are
relay candidates, and start a back-off timer based on their own
distance to the destination, which when elapsed will trigger a
channel check (CCA). The node with the shortest back-off
timer will sense no channel activity and proceed to forward
the message by transmitting the preamble for CI units of
time. Other relay candidates will detect the winner’s preamble
containing the same sequence number, drop the data and go
back to sleep since the packet is already being forwarded. The
Microframes also serve as a passive acknowledgment to the
previous sender of the message. As a consequence of the way
relay candidates are determined, packets are geographically
routed to the final destination in a greedy way.

TSTP offers two modes of clock synchronization: specu-
lative and explicit. Speculative mode runs continually, taking
advantage of timestamps present in messages that pass through
the nodes. Each node N selects a peer PN closer to the
gateway to synchronize to by observing traffic from the
neighbors. Every time N overhears a transmission from PN ,
say at time t1, it records cN (t�1) as the reception time of the
message and updates its clock offset according to Equation 1.
Starting from the second message N overhears from PN , it is
able to update its clock drift in relation to PN as

f̂e =
(cPN

(ti)− cN (t�i))− (cPN
(t1)− cN (t�1))

cPN
(ti)− cPN

(t1)
(4)

and the corresponding accuracy of the estimation δQ (Equa-
tion 3). If PN detects that the network went silent for so
long that it might have drifted out of sync more than its
acceptable limit, it tries an explicit time synchronization
request by sending a message with the Time request bit set.
This message may be either a new message destined to PN

or any other message N would already send. When a node
receives a message of this kind, it clears the Time request bit
and forwards it as usual, but after the forwarding, it inserts a
new message destined only for N to fetch all the necessary
timestamps. Since the minimum time between two messages is
CI (usually hundreds of milliseconds), N is now synchronized
with a known minimum accuracy δQ ≥ (CI·fPN

)−1. Figure 5
illustrates this process.

cA(t1)

cB(t2)

m1

(Time req=0)

Node A Node B Node C

m
1(Time req=0)

cB(t1)

m
1(Time req=0)

m
1(Time req=1)

m2

cA(t2)

Figure 5: TSTP explicit time synchronization example. Time
flows from top to bottom and nodes to the right are closer to
the gateway.

VI. EVALUATION

We analyzed the characteristics exposed in Section III and
implemented the protocol in EPOS and the EPOSMoteIII
platform, which is based on Texas Instrument’s CC2538
SoC featuring an ARM Cortex-M3 32MHz processor and an
IEEE 802.15.4 transceiver with 2450MHz DSSS PHY. For
timestamping, we use the SoC’s 32MHz timer with ±40ppm
accuracy dedicated to network software.

We have control over the MAC, and the software and
hardware involved are highly deterministic. The time from the
start of step 1 to the end of step 4 (Section III) was measured
with an oscilloscope to be exactly 352.17µs, only 170ns above
the expected value (Tu+TPHR), with a detected jitter equal to
the oscilloscope’s own period (5ns). Recording of the receiver
timestamp is handled by hardware, so the time between steps
5 and 6 is assumed to be zero.

We replicated the experiments carried out by Schmid [15]
for the CC2420 platform to determine the time between the
hardware SFD signal (exported by the platform as GPIO) at the
sender and at the receiver in our platform. To do so, we set up
one node to transmit messages periodically and two to simply
listen. The nodes were distributed close to each other (less than
30cm away) and with no obstacles in between. We observe the
SFD signals at each of the three nodes with an oscilloscope and
mark their time differences (Figure 6). The delays observed
range from 3.038µs to 3.225µs, representing a jitter of 187ns.
Using the average value of 3.1315µs, the maximum unpre-
dictable variation of the actual delay for a given transmission
is 93.5ns. This number represents the hardware-imposed limit
of synchronization we can consistently get at the instant of
offset determination between two nodes.

To evaluate the performance of the clock drift estimation
component, we set up four motes in a star topology dis-
tributed in positions similar to the previous experiment. We
set three motes as receivers and a single transmitter, which

Node 1 Node 2

3.
05

3.
10

3.
15

3.
20

SF
D

 d
el

ay
 (u

s)

Figure 6: Jitter in Start of Frame Delimiter transmission.

sends timestamps at a constant interval of 3 (Figure 8) or
15 seconds (Figure 9). Each receiver node listens to every
message and independently synchronizes with the transmitter.
When a message arrives at time ti, the receiver first gets cN (t�i)
without any offset correction, then estimates with its previous
calibration variables what the value of cN (ti) is going to be
after instant offset determination:

ĉN (ti) = f̂e · (cN (t�i)− cN (t�i−1) + φ)

It then calculates its immediate offset from the sender (Equa-
tion 1), updates its clock drift estimation (Equation 4), gets the
actual cN (ti), and gets the error as cN (ti)− ĉN (ti). Figure 7
compares the instant offset at the moment of message recep-
tion with the previously estimated correction values during
execution of Node 1 in Figure 8. The error is the difference
between the two. In Figures 8 and 9, only the error and instant
offset values are shown.

More than achieving a sub-microsecond instant synchro-
nization per-hop close to the physical limit that is comparable
to PTP, VHT and RBS, the results show that with relatively
light traffic of one message every three seconds, we keep
the network synchronized to sub-microsecond accuracy at all
times without insertion of any extra message in the network
(while PTP, for instance, requires at least 3 explicit syn-
chronization messages). This accuracy gets worse as traffic
becomes more sparse, reaching almost 15µs with a message
period of 15 seconds. In the worst case observed, the precision
of error estimation is 0.06% of the actual clock offset.

VII. CONCLUSION

In this work, the clock synchronization strategy of the
Trustful Space-Time Protocol was presented in detail. TSTP
is an application-oriented communication protocol for the IoT
which closely integrates distinct components, such as Medium

−1
00

−5
0

0
50

10
0

Running time (s)

O
ffs

et
 (u

s)

0 30 60 90 120 150 180 210 240 270 300 330 360

Actual offset
Estimated correction
Error

Figure 7: Actual offset from the gateway before calibration,
estimated correction value based on previous observations and
its corresponding error for Node 1 in Figure 8.

Access Control and time synchronization, to efficiently deliver
functionality often needed by WSN and IoT applications.

We carried out an analysis of sources of synchronization
errors in networks in general and IEEE 802.15.4 networks in
particular, with experiments to characterize the delay param-
eters of the EPOSMote III platform.

We also presented a speculative time synchronization strat-
egy which benefits from network traffic to synchronize the
clocks across the network with minimal injection of explicit
messages. We showed that in a case where one packet was
sent every three seconds, nodes could synchronize their clocks
to sub-microsecond precision without inserting any time-
synchronization-specific messages.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by CNPq under grants
449996/2014-0, 404874/2013-4, by CAPES PROCAD under
grant 2966/2014, and by CTIC under grant 002571.

REFERENCES

[1] Flaviu Cristian. Probabilistic clock synchronization. Distributed Com-
puting, 3(3):146–158, September 1989.

[2] Prabal Dutta, Jay Taneja, Jaein Jeong, Xiaofan Jiang, and David Culler.
A building block approach to sensornet systems. In Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems, SenSys
’08, pages 267–280, New York, NY, USA, 2008. ACM.

[3] John C. Eidson. Measurement, Control, and Communication Using IEEE
1588 (Advances in Industrial Control). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[4] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. SIGOPS Oper. Syst.
Rev., 36(SI):147–163, December 2002.

[5] R. Gusella and S. Zatti. The accuracy of the clock synchronization
achieved by tempo in berkeley unix 4.3bsd. IEEE Transactions on
Software Engineering, 15(7):847–853, Jul 1989.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Running time (s)

O
ffs

et
 (u

s)

0 27 54 81 108 144 180 216 252 288 324 360

Node 1 offset
Node 2 offset
Node 3 offset

(a) Clock offsets for each node in relation to the gateway before
calibration.

−0
.5

0.
0

0.
5

1.
0

Running time (s)

Er
ro

r (
us

)

0 27 54 81 108 144 180 216 252 288 324 360

Node 1 estimation error
Node 2 estimation error
Node 3 estimation error

(b) Error in the clock offset for each node after calibration using a
previous estimation of clock drift.

Figure 8: Three EPOSMoteIII devices synchronizing with a
fourth. Messages with timestamp are sent by the synchronizer
node every 3 seconds.

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Running time (s)

O
ffs

et
 (u

s)

0 2250 4500 6750 9000 11250 13500

Node 1 offset
Node 2 offset
Node 3 offset

(a) Clock offsets for each node in relation to the gateway before
calibration.

−5
0

5
10

15

Running time (s)

Er
ro

r (
us

)

0 2250 4500 6750 9000 11250 13500

Node 1 estimation error
Node 2 estimation error
Node 3 estimation error

(b) Error in the clock offset for each node after calibration using a
previous estimation of clock drift.

Figure 9: Three EPOSMoteIII devices synchronizing with a
fourth. Messages with timestamp are sent by the synchronizer
node every 15 seconds.

[6] IEEE. Ieee standard for a precision clock synchronization protocol
for networked measurement and control systems. IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pages c1–269, July 2008.

[7] L. L. Lewis. An introduction to frequency standards. Proceedings of
the IEEE, 79(7):927–935, Jul 1991.

[8] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
flooding time synchronization protocol. In Proceedings of the 2Nd
International Conference on Embedded Networked Sensor Systems,
SenSys ’04, pages 39–49, New York, NY, USA, 2004. ACM.

[9] A. M. Mehta and K. S. J. Pister. Frequency offset compensation for
crystal-free 802.15.4 communication. In International Conference on
Advanced Technologies for Communications (ATC), pages 45–47, Aug
2011.

[10] D.L. Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on Communications, 39(10):1482–1493, Oct 1991.

[11] Davi Resner and Antônio Augusto Fröhlich. Design Rationale of a
Cross-layer, Trustful Space-Time Protocol for Wireless Sensor Net-
works. In 20th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2015)., pages 1–8, Luxembourg,
Luxembourg, September 2015.

[12] Davi Resner and Antônio Augusto Fröhlich. Key Establishment and
Trustful Communication for the Internet of Things. In 4th International
Conference on Sensor Networks (SENSORNETS 2015), pages 197–206,
Angers, France, February 2015.

[13] Davi Resner and Antônio Augusto Fröhlich. TSTP MAC: a Cross-Layer,
Geographic, Receiver-Based MAC Protocol for WSNs. In Brazilian
Symposium on Computing Systems Engineering., Foz do Iguaçu, Brazil,
November 2015.

[14] Davi Resner and Antônio Augusto Fröhlich. TSTP MAC: A Foundation
for the Trustful Space-Time Protocol. In 14th IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing (EUC 2016), To
appear, Paris, France, August 2016.

[15] Thomas Schmid, Prabal Dutta, and Mani B. Srivastava. High-resolution,
low-power time synchronization an oxymoron no more. In Proceedings
of the 9th ACM/IEEE International Conference on Information Process-
ing in Sensor Networks, IPSN ’10, pages 151–161, New York, NY, USA,
2010. ACM.

[16] Hui Zhou, Charles Nicholls, Thomas Kunz, and Howard Schwartz.
Frequency accuracy and stability dependencies of crystal oscillators.
Technical report, Carleton University, 11 2008.

