
November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 1

Aspect-oriented Programming

Mateus Krepsky Ludwich
mateus@lisha.ufsc.br

http://www.lisha.ufsc.br

November 03, 2010



November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 2

Introduction

 Why encoding important issues in a cleanly 
localized way (single code section)?
● Because is better to:

●Understand, analyze, modify, extend, debug, reuse, 
maintain, ...

 Object-oriented, generic, and component-
oriented programming allow us that

 However there are issues that are difficult or 
impossible to express in a cleanly and localized 
way
● these cross-cut the system and affect many classes
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Cross-cutting concerns

 Shotgun surgery:
"You whiff this when every time you make a kind 
of change, you have to make a lot of little 
changes to a lot of different classes."

 Cross-cut concerns
● Examples: synchronization, security control, 

exception handling, logging, caching, persistence
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Composition mechanisms

 Conventional
● function calls
● dynamic and static parametrization
● Inheritance

 Aspect-oriented
● Composition rules in SOP - Subject-oriented 

programming
● Message filters in CF - Composition Filters
● Transversal strategies in Demeter
● Join point models
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Join point models

 Join points
● Points in a running program where additional 

behavior can be usefully joined

 Pointcuts
● A way to specify (or quantify) join points

 Advices
● Code that runs at pointcuts

 Aspect
● The combination of the pointcut and the advice
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Aspect-Oriented Programming

 Deals with cross-
cutting concerns
● abstracts non-

functional properties
● reduces replicated 

code
● are reusable 

 A new construct: 
Aspect
● are woven with 

components
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Synchronized stack example

 Constrains
● Push only when is not full
● Pop only when is not empty
● Push, self exclusive
● Pop, self exclusive
● Push and pop, mutually exclusive
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Tangled version

 Tangled version
● Aspect (synchronization) code manually coded and 

mixed with the functional code 
● Non-intentional representation of the synchronization 

aspect
● Unnecessary overhead in a single-thread scenario
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Parametrized inheritance version

 Reuse the synchronization wrapper for different 
stack implementations (e.g. stacks using 
different data structures for storing their 
elements)

 Multi-thread scenario stills checks for error (in 
push and pop) operations, although the 
checking is not needed in this case. Can be 
solved by another wrapper level...
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AspectJ + Cool version

 Cool
● an aspect language for expressing synchronization in 

concurrent OO programs
● Implemented in AspectJ 0.1.0 (October 2010: 1.6.10)

 One language for each aspect it addressed
● Cool – synchronization
● Ridl – remote invocation
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Expressing Aspects 
in Programming Languages

 Implementing aspect-specific abstractions
● Conventional library

●Sometimes is the only choice
●E.g. Dynamic Cool in Smaltalk

● Design a separated language for the aspect
●E.g. Cool, Ridl

● Design a language extension for the aspect
●Differs from the previous one in technology rather than at the 

language level
●Uses the same compilation infrastructure that the 

“conventional” language
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Expressing Aspects 
in Programming Languages

 Implementing weaving
● source-to-implementation transformation

●Tangle code, containing aspect and functional code 
generated at compile time

●E.g. AspectJ + Cool
● dynamic reflection

● Interpreted at runtime and the control is transferred between 
the aspects as often as necessary

●E.g. Dynamic Cool in Smaltalk
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Conclusions

 AOP provides a way for capturing important 
aspects of systems in a cleanly localized way, 
that generalized procedures aren't capable of

 Introduces a new style of decomposition
●     aspects componentization

 Multiparadigm view: OO + AO
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