
November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 1

Aspect-oriented Programming

Mateus Krepsky Ludwich
mateus@lisha.ufsc.br

http://www.lisha.ufsc.br

November 03, 2010

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 2

Introduction

 Why encoding important issues in a cleanly
localized way (single code section)?
● Because is better to:

●Understand, analyze, modify, extend, debug, reuse,
maintain, ...

 Object-oriented, generic, and component-
oriented programming allow us that

 However there are issues that are difficult or
impossible to express in a cleanly and localized
way
● these cross-cut the system and affect many classes

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 3

Cross-cutting concerns

 Shotgun surgery:
"You whiff this when every time you make a kind
of change, you have to make a lot of little
changes to a lot of different classes."

 Cross-cut concerns
● Examples: synchronization, security control,

exception handling, logging, caching, persistence

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 4

Composition mechanisms

 Conventional
● function calls
● dynamic and static parametrization
● Inheritance

 Aspect-oriented
● Composition rules in SOP - Subject-oriented

programming
● Message filters in CF - Composition Filters
● Transversal strategies in Demeter
● Join point models

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 5

Join point models

 Join points
● Points in a running program where additional

behavior can be usefully joined

 Pointcuts
● A way to specify (or quantify) join points

 Advices
● Code that runs at pointcuts

 Aspect
● The combination of the pointcut and the advice

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 6

Aspect-Oriented Programming

 Deals with cross-
cutting concerns
● abstracts non-

functional properties
● reduces replicated

code
● are reusable

 A new construct:
Aspect
● are woven with

components

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 7

Synchronized stack example

 Constrains
● Push only when is not full
● Pop only when is not empty
● Push, self exclusive
● Pop, self exclusive
● Push and pop, mutually exclusive

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 8

Tangled version

 Tangled version
● Aspect (synchronization) code manually coded and

mixed with the functional code
● Non-intentional representation of the synchronization

aspect
● Unnecessary overhead in a single-thread scenario

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 9

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 10

Parametrized inheritance version

 Reuse the synchronization wrapper for different
stack implementations (e.g. stacks using
different data structures for storing their
elements)

 Multi-thread scenario stills checks for error (in
push and pop) operations, although the
checking is not needed in this case. Can be
solved by another wrapper level...

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 11

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 12

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 13

AspectJ + Cool version

 Cool
● an aspect language for expressing synchronization in

concurrent OO programs
● Implemented in AspectJ 0.1.0 (October 2010: 1.6.10)

 One language for each aspect it addressed
● Cool – synchronization
● Ridl – remote invocation

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 14

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 15

Expressing Aspects
in Programming Languages

 Implementing aspect-specific abstractions
● Conventional library

●Sometimes is the only choice
●E.g. Dynamic Cool in Smaltalk

● Design a separated language for the aspect
●E.g. Cool, Ridl

● Design a language extension for the aspect
●Differs from the previous one in technology rather than at the

language level
●Uses the same compilation infrastructure that the

“conventional” language

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 16

Expressing Aspects
in Programming Languages

 Implementing weaving
● source-to-implementation transformation

●Tangle code, containing aspect and functional code
generated at compile time

●E.g. AspectJ + Cool
● dynamic reflection

● Interpreted at runtime and the control is transferred between
the aspects as often as necessary

●E.g. Dynamic Cool in Smaltalk

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 17

Conclusions

 AOP provides a way for capturing important
aspects of systems in a cleanly localized way,
that generalized procedures aren't capable of

 Introduces a new style of decomposition
● aspects componentization

 Multiparadigm view: OO + AO

November 03, 2010 Mateus Krepsky Ludwich (http://www.lisha.ufsc.br) 18

References

 Czarnecki, K. and Eisenecker, U. W. 2000
Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley
Publishing Co.

 Fowler et al., 1999 Refactoring: Improving the
Design of Existing Code. Addison-Wesley.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

