
De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 29

Application-Oriented System Design

LISHA/UFSC

Prof. Dr. Antônio Augusto Fröhlich

�� � � � � ��� 	�
 � � 
� � � ���

	 � ��� � � � � � � � � ��� 	�
 � � 
� � � ��� ��� �� � �

March 2004



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 30

Application-Oriented Operating Systems

"An application-oriented operating system is only defined 
with regard to the corresponding application(s), for which 
it implements the necessary run-time support that is 
delivered as requested."



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 31

adapter

adapter

adapter

Scenario

aspect

aspect

Application-Oriented System Design

Domain

MemberMember

Member

Member

Family

infl. Inter.

aspectfeature
config.

Families of
Abstractions Frameworks



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 32

Application-Oriented Domain Decomposition

� Abstractions model domain entities

� Commonality analysis 

�

Build families of abstractions

� Variability analysis

�

Shape family members (subclassing or not)�

Separate scenario aspects

� Factorization

�

Configurable features

� Inter-family relationships

�

System-wide properties�

Reusable architectures



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 33

Scenario-Independent Abstractions

� Can be reused in a variety of scenarios

� Yield software components

�

Application-ready ADTs

�

Correspondence with domain entities

� Families

�

Class hierarchy 

�

Cooperating classes

�

Common package�

Base class or utility classes�

Configurable features



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 34

Inter-Family Relationships

� Shape framework 
composition rules

� Avoid

�

Restrictive rules�

Loose rules�

Relations for the sake of 
reuse�

Factorization



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 35

Scenario Aspects

� Properties that transcend the scope of abstractions

�

Scenario dependencies

�

Non-functional properties

� Can also be organized as families

� Application to abstractions

�

AOP Weaver

�

Scenario adapters



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 36

Scenario Adapters

� Scenario adapters

�

Adapt an abstraction to match the semantics dictated by a 
scenario

AbstractionClient

Scenario Adapter

Scenario
aspect

aspect



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 37

Configurable Features

� Configurable features differ from aspects in that

�

They are specific to a single family of abstractions (do not 
crosscut families)

�

They are not transparent to abstractions�

but encapsulate generic programming implementations of algorithms 
and data structures associated to the feature that can be reused by 
abstractions when the feature is turned on



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 38

� Export families of abstractions to applications as if they 
were a single abstraction

�

Well-known to application programmers

�

Comprehensive

�

Promote requirement analysis

Inflated interfaces



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 39

Partial and Selective Realization



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 40

Inflated Interface Types 



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 41

Inflated Interfaces of 
Dissociated Families of Abstractions



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 42

Component Frameworks

� Also known as “black-box frameworks”

�

Based on the idea of software components and defined 
interfaces (in opposition to inheritance and overriding used in 
white-box frameworks)

�

The reuse of a component does not imply on reusing the 
whole framework along with it

� Defined as compositions of scenario adapters (place 
holders for components) and a configuration knowledge 
base that specifies components' requirements and 
dependencies



De
di

ca
te

d 
O

pe
ra

tin
g 

Sy
st

em
s

March 2004 http://www.lisha.ufsc.br 43

Application-Oriented OS

application

interfaces

scenario adapters

system micro-components system abstractions


