
Application-Driven Embedded System Design

The majority of processors produced nowadays are targeted at dedicated computing systems that
execute either a single application or a small set of previously known applications. In contrast to generic
computing systems, these dedicated systems have very specific run-time support requirements, which
are not properly fulfilled by general-purpose operating systems. The impossibility to anticipate which
applications will be executed results in generic operating systems being forced to provide an extensive
set of services targeted at making all resources available to all applications. The standardization of such
generic system services locked general-purpose operating system inside a hard shell that prevents
innovations from reaching applications. With regard to dedicated computing, these generic operating
system provide uncountable services that are not used by individual applications, and yet fail to fulfill
application demands.

Within this context, the Application-Driven Embedded System Design (ADESD) multiparadigm method
proposes a novel strategy to systematically construct application-oriented operating systems as
arrangements of adaptable software components. Instead of standard compliance and hardware
properties, the features offered by such a system emanate directly from application requirements, thus
enabling it to be customized according to the needs of particular applications. Such application-tailored
system instances are produced by selecting, configuring, and composing proper components. Even if
applications refrain from the new application-oriented services in benefit of standard interfaces, most
dedicated applications require such a small subset of those interfaces that mapping them to new system
services — instead of porting their traditional implementations — is usually possible.

The ADESD multiparadigm design method guides domain decomposition towards families of scenario-
independent system abstractions that can be reused to build a variety of run-time support systems.
Environmental dependencies observed during domain decomposition are separately modeled as scenario
aspects, which can be transparently applied to system abstractions with the aid of scenario adapters. The
assembling of such software components to produce a functioning system is assisted by component
frameworks, which capture elements of reusable software architecture identified in the course of domain
engineering. Usability is improved by inflated interfaces, which export whole families of abstractions to
users as if they were single macrocomponents, passing the responsibility of selecting appropriate family
members to the system.

For more information on the ADESD method, please refer to its book.

http://www.lisha.ufsc.br/pub/Frohlich_2001.pdf

	Application-Driven Embedded System Design

