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1. Overview
Intelligent Seismic Data Compressor for OBNs (OBNZip)  is a joint effort of LISHA, LVA, LaSin and
Petrobras  to  investigate  the  possibility  of  applying  Artificial  Intelligence  (AI)  techniques  within  the
paradigm of the Internet of Things (IoT)  to compress seismic data produced by Ocean Bottom
Nodes (OBNs).  The project  will  also investigate techniques to efficiently  manage the energy budget of
such nodes, as well as alternative for them to communicate among themselves and with underwater
vehicles and surface vessels.

2. Seismic Data Compressor
The primary objective of OBNZip is to develop an advanced system for compressing underwater seismic
data  collected  by  Ocean  Bottom  Nodes  (OBNs)  through  the  application  of  artificial  intelligence
techniques.  In  addition,  the  project  encompasses  exploratory  research  into  submarine  wireless
communication and energy management strategies within OBN systems. The developed compression
system is intended to enable more efficient data transmission, while the integration of AI models aims to
enhance energy efficiency by facilitating the selection of optimized operational modes for the OBNs.

To  address  these  challenges,  OBNZip  has  been  conceived  as  a  domain-specific  data  compression
solution,  specifically  tailored to the unique properties of  seismic data acquired from OBN systems.  The
software  is  designed  to  achieve  high  compression  efficiency,  maintain  computational  scalability,  and
ensure  adaptability  across  various  hardware  platforms.  By  preserving  data  fidelity  while  significantly
reducing file sizes, OBNZip supports optimized workflows throughout the seismic data lifecycle, including
acquisition,  transmission,  and  post-processing  stages.  Its  modular  and  flexible  architecture  allows  for
deployment  across  diverse  computing  environments,  ranging  from resource-constrained  embedded
systems located  near  the  data  source  to  high-performance  computing  servers  used  in  centralized
processing facilities. Performance evaluations of OBNZip are conducted across three key operational
contexts: Embedded, Workstation, and Server, each corresponding to distinct phases in the processing of
seismic data.

2.1. Architecture

The architecture of the OBNZip compressor is illustrated in Figure 1 and is composed of three primary
components: a front-end interface, a data analysis pipeline, and a modular compression pipeline.

https://lisha.ufsc.br/HomePage
https://lva.ufsc.br
https://lasin.ufsc.br
https://petrobras.com.br/en/our-activities/technology-innovation/


The front-end interface facilitates adaptation to a wide range of  execution environments—including
command-line interfaces on desktop systems, web-based servers in cloud environments, and APIs within
embedded platforms. This component is responsible for parsing configuration files, executing commands,
and dynamically constructing the compression pipeline to suit the specific operational context.

At the core lies the modular compression pipeline, designed to support a sequence of processing stages.
These stages typically include transform encoding, sampling, predictive coding, dimensionality reduction,
and quantization, culminating in entropy encoding. Quantization, positioned immediately prior to the
entropy encoding stage, plays a crucial role in enhancing the compatibility and effectiveness of diverse
compression strategies. During decompression, this stage may also facilitate signal smoothing through
dequantization techniques.

Figure 1: Compressor topview architecture.
2.2. Results for OBNZip workstation

Figures 1 show that while the GPU implementation incurs higher execution times than the CPU for small
datasets—due to data transfer overhead from main to GPU memory—it consistently outperforms the CPU
as the number of spatial traces exceeds approximately 700. For larger datasets, GPU execution time
remains nearly constant due to its  parallel  processing advantages,  whereas CPU time continues to
increase.  This  trend  highlights  that  despite  initial  overheads,  GPUs  are  more  efficient  for  larger
workloads,  as  their  computational  parallelism  offsets  data  transfer  costs  and  delivers  superior
performance  compared  to  CPUs.
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Figures 2 display compression ratios across varying levels of compression aggressiveness and dataset
types, revealing that lower aggressiveness settings yield higher compression ratios—indicating less data
reduction and larger compressed files. While "Aggressive" settings produce moderately lower ratios than
"Less  Aggressive"  ones,  the  difference  is  relatively  minor.  In  contrast,  the  "Very  Aggressive"
configuration leads to a pronounced decrease in compression ratio—often by 50% or more—highlighting
its effectiveness in achieving significantly more compact data representations.
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Figures 3 show that Normalized Root Mean Squared Error (NRMSE) increases with greater compression
aggressiveness,  reflecting  the  typical  trade-off  between  data  reduction  and  reconstruction  accuracy.



While aggressive compression introduces higher error,  it  also achieves significantly better compression
ratios,  which may be acceptable depending on application needs.  Notably,  GPU-based compression
consistently  results  in  lower  NRMSE  values  compared  to  CPU  implementations—especially  under
"Aggressive"  and  "Less  Aggressive"  settings—indicating  that  the  GPU  not  only  provides  speed
advantages but also tends to preserve data fidelity more effectively.
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3. Exploratory Studies
OBNZip project also aims to corry out exploratory studies on submarine wireless communication and
energy management in OBNs, as briefly described below.

3.1. Energy Management
This objective will conduct an exploratory study on energy management in OBNs, including monitoring
the energy available in the storage system, the orchestration of the operating modes of the various
components  of  the  OBN in  terms of  energy  and recharging  of  storage systems.  Resource  scaling
techniques, such as acoustic and thermal electric energy harvesting and a seawatter battery, are under
development.

3.2. Underwater Communication
This exploratory study aims investigate about underwater wireless communication to determine the
boundary  conditions  for  application  of  the  main  technologies  available  in  scenarios  of  interest  to



Petrobras, that is, deep marine waters. Two technologies are under investigation and tests: optical and
acoustical  communication.  Experimental  test  have  been  carried  out  in  water  tanks  and  low  cost
prototypes are under development.

4. Publications
https://lisha.ufsc.br/pub/index.php?key=OBNZip
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