
SDAV — SmartData for Autonomous Vehicles Management] GitLab SeaFile Manager

SDAV: Simulation

1. Artery Simulator
Artery is a V2X simulation framework for ETSI ITS-G5 protocols like GeoNetworking and BTP. Like many
VEINS-based simulators, Artery is a co-simulation of networking (handled by Artery) and a physical
representation of the vehicle (handled by SUMO).

Figure 1: Artery main components

Figure 1 shows the Artery architecture main components. The SUMO simulation is configured by a
.sumocfg file that calls on the roads (.net.xml), traffic demand (*.rou.xml) and buildings (*.pol.xml)
configuration files. So SUMO runs an independent simulation in parallel to Artery. Artery is composed by
a variety of modules. Some handling the ETSI compliant networking layers and others handling data
acquisition from sensors and/or vehicular mobility.

The central component of vehicles is the Middleware module. The middleware creates service modules
according to an XML configuration file provided by the user. It is possible to equip vehicles with different
sets of applications by configuration, i.e. communication capabilities can vary among vehicles.

1.1. Installation
The simulation is available in the following repository Gitlab under the artery_sim branch.

You must first install SUMO, Artery and OMNeT++ independently before downloading the branch. Please
use the links bellow:

Instal l Omnetpp (use version 5.6) https:/ /omnetpp.org/download/old ; Guide:
https://doc.omnetpp.org/omnetpp/InstallGuide.pdf
Install SUMO from source (version 1.11.0) https://sumo.dlr.de/releases/1.11.0/ ; Guide:
https://sumo.dlr.de/docs/Installing/Linux_Build.html
Install Artery: http://artery.v2x-research.eu/install/

Once the libraries are installed, do remember to test the Artery installation by running the command:



cmake --build build --target run_example

https://lisha.ufsc.br/SDAV
https://docs.google.com/spreadsheets/d/1gVS_V2y2nn2E2FNG1suYHL0WHfFJmzg5HnEtwB8zC5Y
https://gitlab.lisha.ufsc.br/iot/sdav
https://arquivos.ufsc.br/
https://lisha.ufsc.br/Guto
http://artery.v2x-research.eu/
https://veins.car2x.org/
https://gitlab.lisha.ufsc.br/iot/sdav/-/tree/artery_sim
https://omnetpp.org/download/old
https://doc.omnetpp.org/omnetpp/InstallGuide.pdf
https://sumo.dlr.de/releases/1.11.0/
https://sumo.dlr.de/docs/Installing/Linux_Build.html
http://artery.v2x-research.eu/install/

Once Artery is working you can set up the Gitlab repository inside the Artery scenarios using the
following instructions:

clone this repository in another folder and "git checkout artery_sim" this branch
rename ".git" folder at artery code root dir to ".git_artery"
copy&paste ".git" from sdav to artery code root dir
now git will use .git from sdav (which ignores artery folders)
do a git status to test if it works
do a "git pull"

Dependencies:

nlohmann json parser (https://github.com/nlohmann/json/tree/develop) — Download branch and
extract nlohmann from "single_include/json.hpp" file to the monitorAV folder

1.2. Tutorial References

Generating maps and defining traffic through SUMO has many tutorials available through the following
website: https://sumo.dlr.de/docs/Tutorials/

Artery has little in terms of tutorials, but the API has many self-explanatory components and the scenario
directory has many usage examples found here: https://github.com/riebl/artery/tree/master/scenarios

1.3. Step-by-Step Tutorial

In this step by step tutorial we are going to generate a circular road with a middle point. This includes the
generation of all SUMO configuration files and how to select this simulation in Artery.

With SUMO installed, the net edition tools should be available in the command line. If they is not
available you can find them in the $SUMO_HOME/bin directory.

Execute the following command in the command line1.

This generates a circular network with a radius of 110 meters divided into 100 segments.2.
Open the netedit tool through the command line and open the created *.net.xml file. You should3.
see Figure 2:

Figure 2: netgenerate file open in netedit.



netgenerate --spider --spider.arm-number=100 --spider.circle-number=1 --spider.space-
radius=110 --spider.omit-center --no-turnarounds --output-file=<filename>.net.xml

https://github.com/nlohmann/json/tree/develop
https://sumo.dlr.de/docs/Tutorials/
https://github.com/riebl/artery/tree/master/scenarios

SUMO represents roads and traffic through graph nodes. When we need to create a1.
roundabout, or a circular road with a specific geometry, the netedit tools can be used to
modify and adapt roads.
SUMO does not have true curves, it uses linear approximation of curves. If you zoom into2.
the road we created you can see a collection of a 100 straight edges approximating a circle.

Clicking on the demand button you can get a clearer view of the road (Figure 3).4.

Figure 3: Demand tab view of circular road

Select network mode again, then select edge mode, then select edit ->Create consecutive5.
edges.

Figure 4: Selecting network mode and creating consecutive edges

You can then connect any edge you want (or create new ones) like in Figure 5:6.

Figure 5: Edge connection

Now return to demand mode and select route mode.7.
Select any edge of the map to create start point of the route and select another edge to add a8.
waypoint to the route. If you wish you can select as many waypoints as you want to generate a
longer route.

In SUMO all vehicles have some form of predefined route. Routes are stored in the *.rou.xml1.
file and can be associated with any number of vehicles. Vehicles can also have personal
routes created during their definition.
When Artery is receiving Motion Vectors from the IOT it tries to associate the geolocation2.
with the map and creates a route for the vehicle to follow.

With the route selected you can click the "Finish route creation" button to the side9.
Select vehicle mode and click anywhere on the route once to add a vehicle.10.
You can now "save this network as" and save it in a folder inside the Artery scenario to save11.
your *.net.xml file.
Also save the Demand files through File->Demand Elements->Save Demand Elements As to12.
save your *.rou.xml file
Select Edit->Open in sumo-gui13.
Once open you can simply select File->Save Configuration to save your *.sumocfg file.14.

To run this simple simulation and be able to see the vehicle, you can set the "Delay (ms)" to1.
anything above 80 ms. This adds a small delay between simulation steps and allows us to
see the vehicle moving, otherwise the simulation executes as fast as possible and ends.
On an Artery simulation you can leave the "Delay (ms)" field at 0 (zero).2.

You can now close both sumo-gui and netedit15.
Now select your *.net.xml file and look for the projParameter. Substitute "!" for "+proj=tmerc16.
+ellps=WGS84 +datum=WGS84 +units=m +no_defs".

The projection parameter tells SUMO how to calculate the latitude-longitude projection of1.
the cartesian xy position of objects inside the simulation. The configuration above simply
defines the projection as that of the WGS84 format. You can find an in-depth explanation
here.

Add the following to the configuration section of your *.sumocfg file:17.


https://sumo.dlr.de/docs/Networks/SUMO_Road_Networks.html

At this point you should have a *.sumocfg, a *.net.xml and a *.rou.xml file in a folder inside your18.
Artery scenarios.

With the SUMO simulation configured, we can use the Artery simulation to collect the Motion Vectors of
the vehicle.

Change the following lines inside the omnetpp.ini file to set the correct *.sumocfg and to turn off the1.
creation of RSUs:

Inside the services.xml file keep only the code below, the rest can be commented or temporarily2.
removed.

Execute the simulation through:3.

Once the build is complete, the simulation window should pop up. Click run to start, then click run4.
again once the sumo-gui window pops up.
Y o u c a n t h e n s e e t h e M o t i o n V e c t o r o f t h e v e h i c l e i n t h e l o g a t5.
scenarios/monitorAV/results/monitor_car-ego0.out.

The output format of the log is one motion vector per line in a json format for ease of reading:

The vehicle is stopped at a longitude and latitude, the altitude equals the AltitudeValue_unavailable in
Artery and can be ignored. The vehicle is facing east with a 270 degrees heading and has the regular
dimensions of 1.8 meters width and 5 meters length.

As the vehicle begins moving we can visualize the increase in acceleration and speed which, as the
vehicle reaches target speed turns into a controlled acceleration/deceleration.

And once the vehicle inititates the first curve we can see the heading start to change:

<time> <begin value="0"/> <step-length value="0.1"/> </time>



16 *.traci.core.startTime = 0s ... 20 *.traci.launcher.sumocfg = "../<folder name>/<file
name>.sumocfg" 21 *.traci.launcher.sumo = "sumo-gui" ... 27 #*.staticNodes.nodes =
xmldoc("grid_5x5/RSUs.xml")



<?xml version="1.0" encoding="utf-8"?> <services> <service type="MonitorService"
name="MonServ"> <listener port="2002" channel="180" aid="36"/> <filters><name
pattern="ego0"/></filters> </service> </services>



cmake --build build --target run_monitorAV



"Motion_Vector":{"pos":[140.000000,8770.000000,800001.000000],"speed":0.000000,"acceleration":
0.000000,"yaw_rate":0.000000,"heading":2700.000000,"dim":[1.800000,5.000000,0.000000],"class":
5,"id":0,"conf_percent":100,"timestamp":1720332}



"pos":[140.000000,-9010.000000,800001.000000],"speed":7.281056,"acceleration":2.600000,"yaw_ra
t e " : 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 0 0 . 0 0 0 0 0 0

Unfortunately in SUMO the yaw rate is not the driver of the change in heading, but a measurement of the
result. As the vehicle changes from one edge to the other, the VehicleDataProvider class in Artery
calculates the yaw rate that would result in the heading change.

2. Motion Vector Datasets
There are some Motion Vector datasets available that can be used in combination with the simulation:

VeReMi: A large MV dataset with introduced faults for misbehavior detection. Motion vectors are1.
incomplete.
F2MD: A misbehavior detection simulation based on VEINS. Can be used to generate the VeReMi2.
dataset and control the types of faults being injected. Produces a complete Motion Vector.

"pos":[140.000000,-9080.000000,800001.000000],"speed":7.541056,"acceleration":2.600000,"yaw_ra
t e " : 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 0 0 . 0 0 0 0 0 0
"pos":[140.000000,-9150.000000,800001.000000],"speed":7.630857,"acceleration":0.898008,"yaw_ra
t e " : 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 0 0 . 0 0 0 0 0 0
"pos":[140.000000,-9210.000000,800001.000000],"speed":7.180857,"acceleration":-4.500000,"yaw_r
a t e " : 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 0 0 . 0 0 0 0 0 0
"pos":[150.000000,-9270.000000,800001.000000],"speed":6.730857,"acceleration":-4.500000,"yaw_r
a t e " : - 8 0 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 0 8 . 0 0 0 0 0 0
"pos":[160.000000,-9330.000000,800001.000000],"speed":6.658843,"acceleration":-0.720143,"yaw_r
a t e " : - 1 0 0 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 1 8 . 0 0 0 0 0 0
"pos":[170.000000,-9390.000000,800001.000000],"speed":6.664986,"acceleration":0.061432,"yaw_ra
t e " : - 1 0 0 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 2 8 . 0 0 0 0 0 0
"pos":[180.000000,-9450.000000,800001.000000],"speed":6.713585,"acceleration":0.485997,"yaw_ra
t e " : - 1 2 0 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 4 0 . 0 0 0 0 0 0
"pos":[210.000000,-9500.000000,800001.000000],"speed":6.649595,"acceleration":-0.639905,"yaw_r
a t e " : - 3 9 0 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 7 7 9 . 0 0 0 0 0 0
"pos":[240.000000,-9550.000000,800001.000000],"speed":6.652124,"acceleration":0.025289,"yaw_ra
t e " : - 4 0 0 0 . 0 0 0 0 0 0 , " h e a d i n g " : 2 8 1 9 . 0 0 0 0 0 0
"pos":[270.000000,-9600.000000,800001.000000],"speed":6.660485,"acceleration":0.083612,"yaw_ra
te":-4200.000000,"heading":2862.000000

https://veremi-dataset.github.io/
https://github.com/josephkamel/F2MD

	SDAV: Simulation
	[]
	

	1. Artery Simulator
	1.1. Installation
	1.2. Tutorial References
	1.3. Step-by-Step Tutorial

	2. Motion Vector Datasets

