
Intelligent Acquisition and Analysis System for ECUs (IASE) is a joint effort of LISHA and Renault
to investigate the possibility of applying Artificial Intelligence (AI) techniques within the paradigm of
the Internet of Things (IoT) to optimize the operation of Internal Combustion Engines, particularly in
respect to the calibration of controller's parameters and anomaly detection.
This project is funded by Fundep within the Rota 2030 Line V axis 2.
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1. Development

Figure 1. Developed Versions of the IASE hardware
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Figure 2. IASE hardware (PCB + FZ3 board)

Hardware
CAN interface for data acquisition
Memory capacity of 16GB
Data upload via 4G cellular network
LED status indicators
Bluetooth Low Energy connection
Ethernet and USB connection
Power conditioning circuit
4GB RAM memory
Zynq Ultrascale processor
Quadcore ARM Cortex A53
Dualcore ARM Cortex R5

Software
CAN Protocol selection (XCP / CCP)
Customizable list of variables
4G communication
Offline operation possible
More than 1 day data backup
Android UI via Bluetooth
Live status in LEDs and UI
Safe communication with servers (SSL certificates)

Data Analysis

Knock noise
Description

Engine knock is what happens when a portion of the fuel inside the cylinder detonates
before the rest of the fuel. When your engine is running properly, the spark plug begins the
process of combustion, burning up all the fuel inside the cylinder in one, controlled



explosion. If the octane rating of the fuel you have used is too low, or there is another
damage elsewhere in the engine, some of this fuel may detonate prematurely.
Under specific input conditions, the autoignition of end-gas during the flame propagation
leads to high temperature, acoustic resonances and high-intensity pressure waves whose
reflection inside the chamber causes the knocking noise. These detonations create the
knocking or pinging sound.

Causes
Too Low Octane: High octane fuels burn more uniformly and resist knock, contrastingly, low
octane fuels are not as good for the vehicle and may produce noise when the engine works.
Bad Timing: The spark is not firing exactly when it should, this can cause multiple
detonations in the cylinder, leading to engine knock.
Lean Air/Fuel Mixture: Oxygen sensor, fuel injectors, fuel pump or mass airflow sensor can
create a lean air/fuel mixture in the engine which will not burn fast enough, allowing for
multiple detonations.
Bad Knock Sensor: The knock sensor is designed to detect engine knock and inform the ECU
to correct the problem automatically.
High Temperature: Within a high-temperature environment, the vehicle will be more likely
to this phenomenon occurs.

Symptoms
Knocking or pinging noise coming from the engine, or even in worst cases, faults on the
engine. This phenomenon can significantly increase carbon dioxide emissions, a better
understanding and handling of this event reduces CO2 emissions. As expected, having
those problems in detonations will degrade fuel economy.
Knocking/Pinging noise
Higher CO2 emissions
Lower fuel economy

Detection
This Section presents more details on the achieved results for each algorithm developed.

Figure 3.SELECTED VARIABLES
Isolated Forest

The development of this software component was based on IsolationForest method from sklearn
ensemble library. In each experiment was defined parameters values, for instance, the row
identified with 31 was defined with the contamination (0.0233), max features (18), and max
samples (0.25). The row identified with 32 defined the contamination (0.021), max features (18),
and max samples (0.25), and the 33 investigation considered the contamination (0.0138), max
features (4), and max samples (0.25). Firstly, all variables presented in set A were used, but
even adjusting parameter contamination, it did not reach better results than a F1-score of 26%.



So, we used only the knock signals (set B ) with this method, and achieved a f1-score of 31% as
presented in Figure 4.

Figure 4. RESULTS OF THE EXPERIMENTS
Support Vector Machine - SVM

The implementation of this method used the sklearn SVM module, which has the C-Support
Vector Classification (SVC) function allowing to apply different kernels as parameter. The
dataset was split using the sklearn.model_selection.train_test_split function, setting the test part
to be 25% to the dataset. This method used variables presented in set B, and we iteratively
changed the kernel of the models to try to improve the f1-score. The use of linear and sigmoid
kernels in this model was not able to predict anything from the present dataset, as presented on
Figure 4 on id 34.



At row 25, it was defined the parameter using the Radial Basis Function (RBF) kernel, but it
achieved a f1-score of less than 10%. The polynomial kernel achieved better results with degree
3 to 7 on rows identified by 26 to 30, but increasing the degree level also increased the training
time. After the degree level of 7, it could not converge, so best performance for this model was
a f1-score of 48%, as presented in Figure 4 identified by the rows 24 to 30.

Dense Autoencoder
The dataset used in this method had 7877 data points to each of the 19 signals analyzed and
was divided as mentioned before, in healthy and faulty periods. The implementation of this
method used the Keras library to build the dense autoencoder architecture, starting with the
total number of inputs (signals) decreasing until a point and then returning to the number of
inputs, resulting in the characteristic bottleneck.
With this model the loss threshold was tweaked to understand how it would affect the f1-score,
using the same architecture. The best result was an f1-score of 32%, where it got 246 false
positives, and 14 false negatives. The comparison between different thresholds can be seen in
the Figure 4 from row 33-34.

Convolutional Autoencoder
According to the literature review, a CNN can be a great choice for detecting faults using the
vibrational signals. So, a model was created, making use of the convolutional layers. The
development of this model was similar to a dense autoencoder, but it can analyze windows of
datapoints at a time, instead of single datapoints in time. It predicted 70 false positives which
was better than the dense model, and 21 false negatives. The comparison between different
window sizes can be seen in the Figure 4 from row 31-32.

Feature Extraction Classifier
This model is a classifier, but instead of directly classifying values into temporal sequences, it
first extracts a more meaningful representation using a convolution layer. Thus, the
classification phase can better identify the differences between the samples. Many parameters
have been applied to find the best accuracy, so each experiment was conducted with a different
setup. It was considered a split process, dataset (DS), experiment (exp.) that defines the
input/output variables, and a different parameter such as internal architecture. Experiments
from row 1-8,12-20 considering batch size 128 and sequence length of 64, rows 9-10 uses the
same architecture but batch size 64 and sequence of 32. The experiment on row 11 uses
another architecture, starting with an Input Layer of sequence length by feature numbers,
followed by two layers of convolution 1D and max polling 1D, it is followed by the flattening
process. Afterward, four layers of dense(sequence length // w) and dropout(rate=0.01), thus,
each layer has a different w starting on 2, 4, 8 until 16. Finally, a dense(1) layer is set to define
the classification process. All the results are presented in Figure 4 from row 1-20.

Comparison between algorithms
Results are presented and the best result was the selected variables and feature extraction
variables on the Feature Extraction Classifier with f1-score of 81% and 78% of engine knock
detection in comparison to using just the signals 72%, at Figure 4 respectively 2, 17, 20. The
convolutional autoencoder with 55% of accuracy of f1-score, followed by SVM 48%, dense
autoencoder 32%, and isolated forest with 31% as presented in the Figure 5 of f1-score. It is also
presented the recall results that vary between 50% to 83%, and the precision results were
between 20% to 80%.
Experiments were conducted with the same architecture, dataset, and input variables, but with
different split process on train/test achieved lower accuracy on experiments with the same
amount of the dataset for train/test. It is possible to see at Figure 4 that 1, 2, 3 had 80/20, and
4, 5, 6 had 50/50 with the same characteristics but lower f1-score. The experiments that were
conducted not using the knock signals (set E) achieved a maximum accuracy of 12%, so it leads
to understanding that it is difficult to detect the engine knock fault without the vibrational signal
just analyzing other aspects.
Some of the reasons known that could be interfering in the results of the algorithms are that the



piezoelectric is acquired in high frequency, but while entering the ECU, due the sampling of the
XCP causes the downsampling of the signal. Another hypothesis is that the vehicle has already
implemented some features that try to minimize the knocking noise occurrence, so ECU may be
detecting its occurrence and trying to readjust so that the occurrence does not interfere much in
the process. Even though this readjustment could affect other variables acquired, that leads to
low accuracy in our models.

Figure 5. BEST RESULTS
Misfire

Description
Internal combustion engines use combustion gases themselves generated as a form of
work. In other words, the gases generated in combustion perform the compression stages
and the temperature increases, that cause the gases to burn, expand and the exhaust. In
general, there is an increase in internal pressure due to the high temperature and burning
of gases, the misfire failure is when this burn is not carried out correctly in the combustion
chamber, leaving the engine without power.
Misfiring creates a unique pattern attributed to a particular cylinder. When a misfire occurs,
the balance of the engine is destroyed, and the generalized force at the centre of gravity of
the engine is changed.

Causes
Worn spark plug: the wear of the electrodes can causes the inefficiency of the spark, in
addition, this can overload the spark plug, the ignition coil cables and the catalyst;
Spark plug wire: if the wire seal is damaged, the spark does not reach its destination
correctly, impairing the combustion;
Ignition coil: this coil transforms the voltage received by the battery into voltage to create
an electrical spark in the spark plugs to start combustion of the fuel. If the voltage produced
is not correct, it may cause the misfire. This is considered the most common cause when it
comes to misfires;
Valves: the chamber where the valve is located may contain the presence of charring,
which prevents proper sealing of the same.
Pistons, rings and cylinder liners: engine wear, especially excessive clearance between its
components, can cause oil to burn and foul the spark plug, preventing a perfect burn.
Fuel: using bad or adulterated fuels, in addition to damaging the engine and its
components, produces a higher rate of pollutant gases and causes this type of failure.
Inlet manifold: leakage from the inlet manifold gasket near the cylinder heads;



Fuel Pressure: Low fuel pressure can be caused by a faulty pressure regulator, faulty fuel
pump, or a clogged fuel filter. Low pressure will cause a lean mixture in the engine,
consequently causing misfires in all cylinders;
Low Compression: A faulty timing belt adjustment can cause low compression and therefore
misfire;
Wrong air-fuel mixture: Sensors can cause a faulty air-fuel mixture, such as MAF sensor, O2
sensor, coolant temperature sensor, etc.
Some other situations can be the cause such as defect in the injector, water in the washing
coils, incorrect adjustment of the ignition system, incorrect adjustment of the valves, etc.

Symptoms
It is possible to notice symptoms of misfire during everyday driving of the vehicle.
Brute acceleration: car moves in jerks when stepping on the acceleration pedal, you can
feel it as a strong jolt coming from the engine. The most common situation to detect misfire
is in high gear, low RPM and the throttle on the ground. Raw throttle is a typical sign that
the engine is failing;
Rough Idle: very irregular idling, which may cause the engine to shut down. Thus engine
sensors will get faulty values and the fuel mixture will be confused;
Vibrations: when one or more engine cylinders are not firing correctly, the engine is out of
balance, causing strong vibrations inside the cab when accelerating or idling;
Engine light: If a sensor has failed or has detected that something is not right with the
engine, it will send the information to the engine control unit. The unit, upon receiving the
data, will decide if the problem is serious or not. If the problem repeatedly occurs, the
engine control unit will illuminate the check light. When the ECU detects misfires, it is very
common to turn on the engine light and store a fault code in the cylinder where the engine
fired;
Slow Acceleration: As stated earlier, O2 sensors can receive incorrect information and
generate very lean or rich mixtures. Poor or too rich mixtures can cause a decrease in
acceleration, and may even turn off the turbocharger pressure;
Strong smell of unburnt fuel gas in the exhaust;
Change of engine sound.

Detection
In the following topics, details related to the development of the project and the
experimental evaluations are discussed, explaining how the data acquisition was carried
out, the standards used, with an overview of the platform and, finally, the results found.
A 2019 Renault Sandero, model 1.0, with a four-stage four-cylinder spark-ignition gasoline
engine was allocated for testing and experimentation. Thus, with the car available, it was
possible to collect a significant amount of real data, with or without misfires. The project is
integrated by other students, each one is responsible for a part of the work and it is
essential that everyone collaborate and advance together so that the general objective is
achieved. In the course of the text some activities of other members are mentioned
because they complemented the development of this dissertation.
The hardware responsible for collecting the desired data directly from the ECU was
embedded in the vehicle, via the CAN Calibration Protocol. This device communicates via
4G with the LISHA cloud server, so that the data is processed in the cloud, with greater
computing power available, and stored in a database for later use, including in new studies
and projects. Figure 6 illustrates the communication, from reading the ECU variables to their
respective storage on the server, more details are explained below.



Figure 6 MAIN PARTS OF THE COMMUNICATION STRUCTURE
Data acquisition and Experiments

One of the points that differs this study from most related works found in the literature is that all
data used in the experiments were exclusively taken from the ECU, with the sampling rate
limited by its capacity, which is lower than that of the sensors. Thus, a communication
architecture was structured and the initial part of the project was intended to build a device
capable of communicating with the ECU through protocols such as the CAN Calibration Protocol
and the Universal Measurement and Calibration Protocol. For the construction of the data sets,
more than thirty experiments of fifteen minutes each were carried out, distributed over a
semester. The occurrence of misfire in the experiments ranged from none to more than one
hundred, because of its unpredictability, this control was difficult.
To start the data acquisition process, the hardware embedded in the vehicle must be loaded
with the experiment file. Which indicates the location of the signal in the ECU, including the
definition of Smartdata (Unit, Dev, X, Y, Z, Signature, Type, Period, Workflow) and the range of
minimum and maximum values of the signals (pre-set to check if the measurement is as
expected). The data from the experiments are sent to the server. The communication between
the device and the ECU has a limitation on the sampling rate, separated into four rates: 4ms,
5ms, 10ms and 100ms. The data acquisition used in this work was time-triggered, during this
phase, data is buffered and prepared for serial upload via 4G to the IoT platform using the
SmartData format.
With the device embedded in the vehicle, numerous experiments can be loaded onto it. This
allows a wide range of tests with different objectives to be performed, each of these
experiments can take into account different approaches to misfire detection, which is excellent
for comparing and evaluating the developed algorithms.
At the moment, the focus of this qualification was to develop the algorithms to test the first
detection techniques to be applied and needed more controlled data. Therefore, most of the
ECU data acquisition was done using the Integrated Calibration and Application Tool (INCA) from
ETAS, which is used by Renault. This software allows misfires to be forced into the engine by
decalibrating system variables related to misfire. Although it was used to communicate the ECU
with the server and even though it can read the variables, the hardware developed in the
project does not do this decalibration, with it the car needs to be forced by the driver, it is not
possible to control when the failure occurs and in what amount.
Unlike most of the related works, which carry out simulations of failures on test benches, the
measurements in the project occurred at the car in operation, driven by project members, on
the limited test track within the Joinville campus of the Federal University of Santa Catarina. In
order to obtain different data sets with and without failure for training the algorithms, the
experiments in the vehicle took place on different days and more than once a day, with 1 to 3
experiments of 8 to 15 minutes being generated. The practices were limited to that time due to
overload in the engine, the test car showed signs of degradation when being forced for longer
periods, precisely because the failure can harm the engine and its functioning.
Several experiments were carried out to understand the misfire in different scenarios (engine in
fault and normal conditions, car in stationary and moving state, high and low gear and different
speeds). The experiments were performed with variables that describe basic car components
and systems, such as engine status, and others related to misfire, initially taken from the
bibliography of causes and related works. Numerous machine learning algorithms were applied
to analyze each set of variables. The algorithms training was done with the data collected in the



experiments, for the supervised training the misfire counter variable of the ECU was used, for
the other cases it was disregarded. Varying according to the algorithm, the training parameters
were defined during its execution, observing metrics such as cross entropy and squared error
loss, among others, and observing the convergence of the loss. Some of these experiments are
detailed in the results section.
Subsequently, to confirm the understanding of the causes of the failure and to improve the
performance of the misfire detection algorithms, feature selection algorithms were developed by
another member of the project, to be applied in the construction of new data sets. Having more
than twenty thousand variables available in the ECU, it is necessary to analyze their importance
and choose the essential ones for the misfire detection. It is noteworthy that the fault counter
generated by the ECU was used as a reference parameter to confirm whether the data read was
a fault or not, and also used to label the data so that the feature selection algorithms could be
trained with the variables that symbolize failure over time and also for supervised machine
learning training. Thus, after the process of selecting the variables and forcing the car to fail, it
was possible to obtain large data sets for analysis of the failure identification algorithms.

The feature selection methods applied were:
SelectPercentile: selects resources with a higher scoring percentage specified as parameters,
10\%, 15\% and 20\% were used;
SelectKBest: selects the features with the highest score according to the function chosen as a
parameter, the perason correlation coefficient was used to find the best attributes of a dataset;
Sequential Feature Selector: is a greedy procedure that finds the best feature to add to the
subset of features that starts empty. First finds the feature that maximizes a cross-validation
score when an estimator is trained with a single feature. Once the first feature is selected, the
procedure is repeated adding a new feature to the subset and stopping when the desired
number of selected features is reached;
Recursive Feature Elimination: Select features recursively considering smaller and smaller sets.
Initially it is trained on the complete set where the importance of each feature is obtained in
relation to a specific attribute. Subsequently, the less important features are removed from the
set, a procedure that is repeated until the desired number of features to be selected is reached.
A version of this method in a cross-validation loop to find the optimal number of features was
also used, called \textbf{Recursive Feature Elimination with Cross-Validation}.
SelectFromModel: is a metatransformer used with any estimator that assigns importance to
each resource, in relation to a specific attribute, the random forest regressor was used as an
estimator with square error criterion. Resources are removed if their importance is below the
given threshold parameter. Also, the process ends when a desired number of features to be
selected is reached.
Among the most selected features, which were used in the fault detection, the following systems
and their respective variables stand out (Figure 7):



Figure 7 FEATURE SELECTION
IoT Platform and Workflows

In an overview, the IoT Platform is organized as microservices that provide secure storage and
data processing for SmartData series. The Microservice Manager is an IoT front-end and the
Domain Manager handles microservices requests, being responsible for authentication and
mapping SmartData sets. The SpaceTime Mapper, on the other hand, maps regions of space and
time to the SmartData that are stored or to be stored on the platform. The execution of data
science algorithms on SmartData entering the platform are the responsibility of the Insertion
Managers and those leaving the platform are of the Retrieval Manager.
SmartData is characterized by a version, a unit and source coordinates that show where and
when SmartData was produced, created, captured, sampled, etc. Stored on the Platform, it is a
data point in a SmartData time series. The SmartData stored and processed by the platform
have the following Json representation:

SmartData series are classified based on the mode of operation: time-triggered or event-
triggered, the former must define a period, while the others are considered event-triggered. The
start of a series can be specified by time (by giving t0), by event, or manually (by not giving t0,
which is then assumed to be the current time). Thus, the start of a time-driven series can be an
event, and similarly, event-driven series can start at a certain time. The end of a series can be
specified by time (by giving tf), by event, manually (with the finish method, which makes tf
equal to the current time), or in terms of event count (by giving count). Events are internal
(stored on the platform) or external SmartData, arithmetic and logical operators. The SmartData
Series stored and processed by the platform have the following Json representation:

The SmartData can be directed to a specific Workflow for data processing before its definitive
insertion into the platform or its manipulation afterwards. Workflows are used by the IoT
platform to execute server-side algorithms, related to the received series, which can be defined
as input or output. The SmartData concept is used to add metadata to the read data in order to
make it semantically complete, with a spatial location and reliability. In this way, it is possible to
identify different devices in different locations, in this case vehicles, without adjusting the
settings of each one. Also, being a common data format, there is no need to adapt for each ECU,
so the same algorithms can be used in all cars.
An input workflow can be specified during the creation of the series and its execution occurs
during insertions (PUT method) of SmartData in this Series, being applied to each SmartData
individually and persisted through daemons. It can be used to pre-process data, execute
algorithms, fix data points, generate notifications and interact with other series. Daemons are
sub-processes that receive data from the workflow, do the processing and return it to the
workflow, or insert the processed data into a new series, preserving the original data.
An output workflow can be specified during a query request (GET method) and its execution is
applied at the end of a query process to consider all returned SmartData records, It can be used
to post process the data, to perform aggregations or transformations.
Workflows are used because they can be executed in real time, applying corrections to
measurements and running machine learning algorithms for misfire detection, for example,

&#xf0ea

{ "version" : unsigned char "unit" : unsigned long "value" : double "uncertainty" : unsigned long "x" :
long "y" : long "z" : long "t" : unsigned long long "dev" : unsigned long "signature": string }

&#xf0ea

"Series" : Object { "version" : unsigned char "unit" : unsigned long "x" : long "y" : long "z" : long "r" :
unsigned long "t0" : unsigned long long "tf" : unsigned long long "type" : char[3] "period" : unsigned
long "count" : unsigned long "event" : string "accuracy" : unsigned long "workflow" : unsigned long }



notifying at runtime if faults are detected, in addition to providing real-time data visualization.
Results

The accuracy of all models were high due to the nature of the failure, more data under
normal conditions are measured and for this situation the models are great to evaluate.
As the failure occurrence is periodic, with few measurements, the datasets contain less
cases for training and testing this scenario, so even though it is not good at detecting
the occurrence of failure, this metric has a high performance in the general model, so it
was not considered. Instead, F1 was defined as the metric to be considered, it takes
into account how much the model can differentiate the classes and the percentage of
hits made by the model, that is, how much of the failures were correctly identified.
Figure 8 summarizes the average results found for the developed and tested
algorithms, in very specific scenarios the rating reached 60% F1, but not constantly and
therefore are not being considered.

Figure 8. RESULTS IN FAILED SCENARIOS
After understanding how each algorithm evaluates the data, a number of tests with different
data sets and different parameterizations were made. As can be seen, the maximum F1 found
was using an 1D CNN algorithm, although it did not vary much in performance compared to the
other algorithms based on neural networks, the distance algorithms performed worse. All
algorithms performed with 100% F1 and accuracy in faultless scenarios.
Despite the large amount of work allocated to the development of machine learning algorithms
and the creation of training and test sets, the results found were not sufficient to replace the
detection methodology used by Renault at the time. It was concluded that because it arises
from numerous engine systems and external factors such as environment and driver, a misfire
model is quite complex and difficult to build, even with the application of machine learning
algorithms. The results found are not applicable in the industrial context, it was not possible to
surpass the methodology currently used in terms of performance in the classification. A failure
detection delay was observed, impairing the evaluation metrics. It is noteworthy that the
expected detection may be lower than that found in related works due to the difference in the
sampling rate provided by the ECU, as the algorithms only have access to ECU data, it is not
possible to read directly from the sensors and this implies sampling rate and data quality,
different from what was seen in most of the related work articles.
It is noteworthy that although the results of the model were not better than the strategy used by
Renault, the extensive work developed proved to be adequate for the operationalization of ML
for use in production. As it is a machine learning system designed to be applied at the
production level, a number of problems encountered in its implementation and certain concerns
are not found in the literature. Therefore, testing and monitoring are important considerations to
ensure the system's operation and applicability, avoiding its failure, these issues were
constantly worked on in the project.
As a methodology for data acquisition and processing was developed, new alternatives analysis
were made. So, even though the misfire detection results are not applicable at the industrial
level, the developed framework is. In this way, a change of objective was made for the
continuity of the master's degree, starting to be focused on the analysis of vehicle consumption,
with the proposal of creating a detailed feedback for the engineers, in bench tests, and also for
the drivers, with the car in use. This new proposal is detailed in the next topics of the document.



Driver profile analysis (Classification)
This research aims to perform an analysis on two aspects of fuel consumption: a first one related
to driver behavior, a second on engine and vehicle calibration parameters.

In this section, our goal is to implement models to classify the fuel consumption as pro or non-
economic, low or high consume, through the instantaneous data gathered from the vehicle.

Classifiers are learning models applied to data labeled with classes or categories, which
objective is to predict what class each data record belongs to. In this research context, the
classes consist in levels of consumption, categorizing how much the driving behavior at the
moment stands for a higher or lower consumption.

For this research, we chose to partition the data in two classes: a “low consumption” and a “high
consumption” class. The division criterion is based on an analysis of the distribution of recorded
instantaneous fuel consumption, gathered on experiments. Observing the distribution patterns,
a threshold of 5.5 l/h was set, considering that above this is a high consumption record, and
below this a moderate to low consumption.

Figure 9. HISTOGRAM AND DISTRIBUTION STATISTCS OF FUEL CONSUMPTIOM
(l/h)

There are different models of classifiers, being the mainly used in this research the XGBoost,
optimized implementation of the Gradient Boost method. The Gradient Boost is an ensemble, a
method of combining weaker learners to perform as a strong one, in this case of decision trees,
where different learners are trained in sequence with the errors of the previous.

The model was trained and tested using data collected from experiments with the vehicle. For
an analysis of the results, we use the following metrics:

Precision: tp/(tp+fp)
Accuracy: (tp+tn)/N
Recall: tp/(tp+fn)

Where:
tp: number of true positives
tn: number of true negatives
fp: number of false negatives
fn: number of false negatives
N: number of total samples

Interpreting “positive” as classifying the data as “high consumption”, and “negative” as “low
consumption”.
The three used metrics are ratios, ranging from 0 to 1, or equivalently 0% to 100%, where
higher measures means the better performance. Precision measures how much the model
predicts correctly the positives; recall measures the proportion of predicted and existing
positives; and accuracy measures the proportion of total correct predictions in relation to all
tested samples.



Below, the training and testing results, where one experiment is used as training set for the
model, and another one as test set.

Figure 10. PREDICTED LABEL
Accuracy: 0.9848993288590604
Recall: 0.972972972972973
Precision: 0.9326424870466321
It may be seen that the model have a good performance, showing good results for all three analyzed
metrics, in special a 98% of accuracy. By the confusion matrix, it can be observed as well that very
few data points are incorrectly classified, counted in the numbers shown in the lower left and upper
right entries, while the majority of the points classes are correctly predicted, that can be seen in the
remaining entries.

Fuel Consumpition Regression

Regression models are statistical and machine learning methods that aim to predict continuous
numerical values. This section objective consists in applying regression methods to predict the
fuel consumption rate, based on another available measures gathered from the vehicle.
Among the different existent regression models, we focus on two of them that shown good
results at the executed tests: the Ridge and the XGBoost regressors.

Ridge is a type of Linear regression applied with a regularization technique, the Tikhonov
Regularization. Essentially, this model determines the parameters θ1, …, θn minimizing the
loss function L(θ) = (ŷ1-y1)² + … + (ŷn - yn)² / n + α(θ1² + … θn²) / 2, in order to construct
the predictor in the form: ŷ(x) = θ1x1 + … + θnxn. In this notation, x = (x1,...,xn) is the
feature vector, ŷ the prediction vector, y the real value vector and α an regularization
parameter. In this work, the Sci-kit Learn implementation of the Ridge Regression is applied,
with the default parameters provided by the library.
The XGBoost Regressor is an implementation of the Gradient Boosting applied for
regression learning. It uses the same working principle as the Gradient Boosting Classifier,
interpreting value ranges and some intermediate value as classes results. Regularization
techniques are applied to control the number and range of output values.

In order to analyze both methods performances, the following metrics are applied:

https://lisha.ufsc.br/(%C5%B71-y1)%C2%B2%20+%20%E2%80%A6%20+%20(%C5%B7n%20-%20yn)%C2%B2


Root mean square error (RMSE);
Absolute mean error (AME);
Max error;
Coefficient of determination(R²).

Both RMSE and AME are mean errors of the predicted set, where the first uses the quadratic
error that show greater penalty for higher errors. The Max Error, as the name suggests, is
the maximum error in absolute value obtained by the model predictions. Finally, the R²
Score is a ratio between the explained variance and the observed variance, going from 0 to
1, being better as greater the value.

Below, some of the found results using the experimental data gathered in the vehicle, where
one of the experiments is used for test and evaluation, and the remaining for training the
models.
Ridge:

Figure 11.TEST VS. PREDICTION - COMPARISON
Root Mean Squared Error: 10.075410892285648
Abs Mean Squared Error: 1.6895357220015024
Max (abs) error: 39.107547185749105
R² determination coefficient: 0.7182110380492899

XGBoost:



Figure 12.TEST VS. PREDICTION - COMPARISON
Root Mean Squared Error: 1.6858840509531254
Abs Mean Squared Error: 0.7039533121878284
Max (abs) error: 10.733944220542908
R² determination coefficient: 0.9490652829412747

Both models show an overall good performance, having an absolute mean error around 1 l/h and
2 l/h. Also, the two models presents R² scores above 70%, meaning that the models can predict
quite correctly the variance in the measured data.
As may be seen, the Ridge mode shows a lower performance, having greater errors and a lower
R² coefficient, what may be caused by the nature of the linear model, that may not consider the
complexity of non-linear phenomenon. Whereas, the XGBoost regressor shows a great
performance, that may be observed by the metrics as well by the plotted graphics, showing an
error oscillating close to 0 in general, with few peaks.

Automatic Report
ECU's Failures

During an experiment, the electronic part of the vehicle may present some failures, which
the ECU reports to the IASE Board. Then the board sends the value of this failure to the
server, where it is treated and reported directly by a Workflow to the tester engineer by
email, with the failure information, such as the component and type of failure, the time
when the failure happened, the vehicle chassis and the repair hints.



Figure 13. ECU's failures automatic treatment diagram
An email report example:

Figure 14. ECU's failures report example
Rangecheck Report

Upon completion of an experiment, it is necessary to conduct an assessment of its overall
situation to check whether variables are within minimal and maximal ranges (defined by the
engineering team). Therefore, a workflow processes the signal indicating the conclusion of
the experiment then extracts both the starting and ending times and analyzes all previously
configured variables. The output of the workflow is a PDF report file summarizing the



experiment's general status, including graphics for all variables that have at least one value
outside the defined ranges.

Figure 15. ECU's rangecheck automatic report diagram
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